L(s) = 1 | + 2.21·3-s − 0.903·7-s + 1.90·9-s + 0.0666·11-s − 13-s − 3.37·17-s − 5.11·19-s − 2·21-s + 4.21·23-s − 2.42·27-s + 1.52·29-s − 4.49·31-s + 0.147·33-s − 11.9·37-s − 2.21·39-s + 2.75·41-s − 8.77·43-s + 8.90·47-s − 6.18·49-s − 7.47·51-s − 3.57·53-s − 11.3·57-s + 8.16·59-s − 11.1·61-s − 1.71·63-s + 2.14·67-s + 9.33·69-s + ⋯ |
L(s) = 1 | + 1.27·3-s − 0.341·7-s + 0.634·9-s + 0.0201·11-s − 0.277·13-s − 0.819·17-s − 1.17·19-s − 0.436·21-s + 0.878·23-s − 0.467·27-s + 0.283·29-s − 0.807·31-s + 0.0257·33-s − 1.96·37-s − 0.354·39-s + 0.430·41-s − 1.33·43-s + 1.29·47-s − 0.883·49-s − 1.04·51-s − 0.490·53-s − 1.50·57-s + 1.06·59-s − 1.43·61-s − 0.216·63-s + 0.262·67-s + 1.12·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 + T \) |
good | 3 | \( 1 - 2.21T + 3T^{2} \) |
| 7 | \( 1 + 0.903T + 7T^{2} \) |
| 11 | \( 1 - 0.0666T + 11T^{2} \) |
| 17 | \( 1 + 3.37T + 17T^{2} \) |
| 19 | \( 1 + 5.11T + 19T^{2} \) |
| 23 | \( 1 - 4.21T + 23T^{2} \) |
| 29 | \( 1 - 1.52T + 29T^{2} \) |
| 31 | \( 1 + 4.49T + 31T^{2} \) |
| 37 | \( 1 + 11.9T + 37T^{2} \) |
| 41 | \( 1 - 2.75T + 41T^{2} \) |
| 43 | \( 1 + 8.77T + 43T^{2} \) |
| 47 | \( 1 - 8.90T + 47T^{2} \) |
| 53 | \( 1 + 3.57T + 53T^{2} \) |
| 59 | \( 1 - 8.16T + 59T^{2} \) |
| 61 | \( 1 + 11.1T + 61T^{2} \) |
| 67 | \( 1 - 2.14T + 67T^{2} \) |
| 71 | \( 1 - 5.54T + 71T^{2} \) |
| 73 | \( 1 - 2.70T + 73T^{2} \) |
| 79 | \( 1 - 3.18T + 79T^{2} \) |
| 83 | \( 1 - 9.89T + 83T^{2} \) |
| 89 | \( 1 + 14.4T + 89T^{2} \) |
| 97 | \( 1 + 7.93T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.126973308827846964001195333599, −7.04065991209364627910350199171, −6.75030154736862082476569882484, −5.65986308129379829558928563633, −4.77287867756418926006796687014, −3.92615008570906691520795466650, −3.23155206464046295596847142036, −2.44477638860835062332878296558, −1.70056191109499319161109159155, 0,
1.70056191109499319161109159155, 2.44477638860835062332878296558, 3.23155206464046295596847142036, 3.92615008570906691520795466650, 4.77287867756418926006796687014, 5.65986308129379829558928563633, 6.75030154736862082476569882484, 7.04065991209364627910350199171, 8.126973308827846964001195333599