Properties

Label 2-5200-1.1-c1-0-76
Degree $2$
Conductor $5200$
Sign $1$
Analytic cond. $41.5222$
Root an. cond. $6.44377$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.89·3-s + 4.38·7-s + 5.38·9-s − 2·11-s + 13-s + 5.86·17-s + 0.973·19-s + 12.6·21-s − 7.79·23-s + 6.89·27-s + 0.973·29-s + 1.79·31-s − 5.79·33-s − 0.591·37-s + 2.89·39-s + 4.81·41-s − 4.68·43-s − 0.381·47-s + 12.1·49-s + 16.9·51-s + 7.79·53-s + 2.81·57-s + 0.973·59-s − 0.817·61-s + 23.5·63-s − 1.79·67-s − 22.5·69-s + ⋯
L(s)  = 1  + 1.67·3-s + 1.65·7-s + 1.79·9-s − 0.603·11-s + 0.277·13-s + 1.42·17-s + 0.223·19-s + 2.76·21-s − 1.62·23-s + 1.32·27-s + 0.180·29-s + 0.321·31-s − 1.00·33-s − 0.0972·37-s + 0.463·39-s + 0.752·41-s − 0.714·43-s − 0.0556·47-s + 1.74·49-s + 2.37·51-s + 1.07·53-s + 0.373·57-s + 0.126·59-s − 0.104·61-s + 2.97·63-s − 0.218·67-s − 2.71·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5200\)    =    \(2^{4} \cdot 5^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(41.5222\)
Root analytic conductor: \(6.44377\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.800782016\)
\(L(\frac12)\) \(\approx\) \(4.800782016\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 2.89T + 3T^{2} \)
7 \( 1 - 4.38T + 7T^{2} \)
11 \( 1 + 2T + 11T^{2} \)
17 \( 1 - 5.86T + 17T^{2} \)
19 \( 1 - 0.973T + 19T^{2} \)
23 \( 1 + 7.79T + 23T^{2} \)
29 \( 1 - 0.973T + 29T^{2} \)
31 \( 1 - 1.79T + 31T^{2} \)
37 \( 1 + 0.591T + 37T^{2} \)
41 \( 1 - 4.81T + 41T^{2} \)
43 \( 1 + 4.68T + 43T^{2} \)
47 \( 1 + 0.381T + 47T^{2} \)
53 \( 1 - 7.79T + 53T^{2} \)
59 \( 1 - 0.973T + 59T^{2} \)
61 \( 1 + 0.817T + 61T^{2} \)
67 \( 1 + 1.79T + 67T^{2} \)
71 \( 1 - 3.92T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 10.9T + 79T^{2} \)
83 \( 1 - 6.97T + 83T^{2} \)
89 \( 1 - 0.973T + 89T^{2} \)
97 \( 1 + 18.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.290223833556480646944083657195, −7.70910989327818453648754909383, −7.27308422713902884925491368925, −5.94300873971735319840932821626, −5.18217905131547094084143841125, −4.33113943259900117115475393936, −3.66909513755982831007188551749, −2.75866755916981861086652347420, −1.99579500745269488570612329828, −1.23778228727632873548565789437, 1.23778228727632873548565789437, 1.99579500745269488570612329828, 2.75866755916981861086652347420, 3.66909513755982831007188551749, 4.33113943259900117115475393936, 5.18217905131547094084143841125, 5.94300873971735319840932821626, 7.27308422713902884925491368925, 7.70910989327818453648754909383, 8.290223833556480646944083657195

Graph of the $Z$-function along the critical line