Properties

Label 2-72e2-12.11-c1-0-8
Degree $2$
Conductor $5184$
Sign $-i$
Analytic cond. $41.3944$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.792i·5-s − 2.71i·7-s − 3.42·11-s − 3.37·13-s + 2.52i·17-s + 2.20i·19-s + 2.15·23-s + 4.37·25-s − 0.792i·29-s − 1.70i·31-s − 2.15·35-s − 4.74·37-s + 0.147i·41-s − 6.94i·43-s − 11.5·47-s + ⋯
L(s)  = 1  − 0.354i·5-s − 1.02i·7-s − 1.03·11-s − 0.935·13-s + 0.612i·17-s + 0.506i·19-s + 0.448·23-s + 0.874·25-s − 0.147i·29-s − 0.306i·31-s − 0.363·35-s − 0.780·37-s + 0.0230i·41-s − 1.05i·43-s − 1.68·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5184\)    =    \(2^{6} \cdot 3^{4}\)
Sign: $-i$
Analytic conductor: \(41.3944\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5184} (5183, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5184,\ (\ :1/2),\ -i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6643940475\)
\(L(\frac12)\) \(\approx\) \(0.6643940475\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 0.792iT - 5T^{2} \)
7 \( 1 + 2.71iT - 7T^{2} \)
11 \( 1 + 3.42T + 11T^{2} \)
13 \( 1 + 3.37T + 13T^{2} \)
17 \( 1 - 2.52iT - 17T^{2} \)
19 \( 1 - 2.20iT - 19T^{2} \)
23 \( 1 - 2.15T + 23T^{2} \)
29 \( 1 + 0.792iT - 29T^{2} \)
31 \( 1 + 1.70iT - 31T^{2} \)
37 \( 1 + 4.74T + 37T^{2} \)
41 \( 1 - 0.147iT - 41T^{2} \)
43 \( 1 + 6.94iT - 43T^{2} \)
47 \( 1 + 11.5T + 47T^{2} \)
53 \( 1 - 8.51iT - 53T^{2} \)
59 \( 1 - 5.17T + 59T^{2} \)
61 \( 1 + 3.37T + 61T^{2} \)
67 \( 1 - 6.94iT - 67T^{2} \)
71 \( 1 + 1.75T + 71T^{2} \)
73 \( 1 + 2.37T + 73T^{2} \)
79 \( 1 + 10.1iT - 79T^{2} \)
83 \( 1 + 7.25T + 83T^{2} \)
89 \( 1 - 5.34iT - 89T^{2} \)
97 \( 1 + 12.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.326493679874333444950038151404, −7.58195988843365823192627156650, −7.15584909282010131599064097103, −6.27175206034477310173500641090, −5.31881743124794443790341158007, −4.79204011777171957641542659141, −3.97473668173164542707511579981, −3.10478102916842886418263470872, −2.12345564708621070568404488300, −0.988203917671832877879560020735, 0.19355954126165350744167168883, 1.82788378937035060913728088179, 2.81655188302739945688851103377, 3.07300685301956163749486331804, 4.60330586697378918822713696629, 5.11166169177837329374473162232, 5.72003136170259741732624230784, 6.79044654057206631857872651635, 7.16571943070963821457660443087, 8.133483049851798907773287752145

Graph of the $Z$-function along the critical line