L(s) = 1 | + (1.03 − 0.866i)2-s + (−0.0320 + 0.181i)4-s + (−0.152 − 0.866i)5-s + (0.733 − 1.27i)7-s + (1.47 + 2.54i)8-s + (−0.907 − 0.761i)10-s + (−2.61 − 4.52i)11-s + (4.58 − 1.66i)13-s + (−0.343 − 1.94i)14-s + (3.37 + 1.22i)16-s + (5.46 − 4.58i)17-s + (0.819 + 4.28i)19-s + 0.162·20-s + (−6.61 − 2.40i)22-s + (−0.233 + 1.32i)23-s + ⋯ |
L(s) = 1 | + (0.729 − 0.612i)2-s + (−0.0160 + 0.0909i)4-s + (−0.0682 − 0.387i)5-s + (0.277 − 0.480i)7-s + (0.520 + 0.901i)8-s + (−0.287 − 0.240i)10-s + (−0.787 − 1.36i)11-s + (1.27 − 0.462i)13-s + (−0.0917 − 0.520i)14-s + (0.844 + 0.307i)16-s + (1.32 − 1.11i)17-s + (0.187 + 0.982i)19-s + 0.0363·20-s + (−1.41 − 0.513i)22-s + (−0.0487 + 0.276i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.87312 - 1.08226i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.87312 - 1.08226i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-0.819 - 4.28i)T \) |
good | 2 | \( 1 + (-1.03 + 0.866i)T + (0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (0.152 + 0.866i)T + (-4.69 + 1.71i)T^{2} \) |
| 7 | \( 1 + (-0.733 + 1.27i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (2.61 + 4.52i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.58 + 1.66i)T + (9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 + (-5.46 + 4.58i)T + (2.95 - 16.7i)T^{2} \) |
| 23 | \( 1 + (0.233 - 1.32i)T + (-21.6 - 7.86i)T^{2} \) |
| 29 | \( 1 + (-2.17 - 1.82i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (4.17 - 7.23i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 12.0T + 37T^{2} \) |
| 41 | \( 1 + (4.81 + 1.75i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (0.594 + 3.37i)T + (-40.4 + 14.7i)T^{2} \) |
| 47 | \( 1 + (3.05 + 2.56i)T + (8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 + (-1.47 + 8.34i)T + (-49.8 - 18.1i)T^{2} \) |
| 59 | \( 1 + (3.28 - 2.75i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (1.64 - 9.33i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (2.03 + 1.70i)T + (11.6 + 65.9i)T^{2} \) |
| 71 | \( 1 + (-2.19 - 12.4i)T + (-66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + (1.09 + 0.400i)T + (55.9 + 46.9i)T^{2} \) |
| 79 | \( 1 + (-5.81 - 2.11i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (-0.520 + 0.902i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (11.9 - 4.35i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (-8.88 + 7.45i)T + (16.8 - 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.77403438070330420514740838437, −10.35597620595325532470439097726, −8.657910117643781689606687550984, −8.263526529490174829893684727063, −7.21484982988079835812426087435, −5.58911781544484662420301116895, −5.12126050814541584508893303818, −3.60739731073556816603895461877, −3.16308597426602827222226504985, −1.24582686628663398213981302153,
1.73482051193092163574183683597, 3.42026942153551367306482626058, 4.58689014282222007068239343899, 5.42898482232600587015887079510, 6.35010289471351395696997221909, 7.20025157096786011768484394776, 8.132059495654751650014459392652, 9.303373848365646684065061070467, 10.27221048374468388423640085544, 10.91740575875998567139958651421