L(s) = 1 | − 2.29·2-s + 3.25·4-s + (−0.0873 − 0.0504i)5-s + (−0.977 + 1.69i)7-s − 2.88·8-s + (0.200 + 0.115i)10-s + (0.427 + 0.246i)11-s − 0.0391i·13-s + (2.24 − 3.88i)14-s + 0.102·16-s + (−3.33 + 1.92i)17-s + (0.824 + 4.28i)19-s + (−0.284 − 0.164i)20-s + (−0.980 − 0.566i)22-s − 5.30i·23-s + ⋯ |
L(s) = 1 | − 1.62·2-s + 1.62·4-s + (−0.0390 − 0.0225i)5-s + (−0.369 + 0.640i)7-s − 1.02·8-s + (0.0633 + 0.0365i)10-s + (0.128 + 0.0744i)11-s − 0.0108i·13-s + (0.599 − 1.03i)14-s + 0.0256·16-s + (−0.808 + 0.467i)17-s + (0.189 + 0.981i)19-s + (−0.0636 − 0.0367i)20-s + (−0.209 − 0.120i)22-s − 1.10i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.656 - 0.754i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.656 - 0.754i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.128812 + 0.282656i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.128812 + 0.282656i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-0.824 - 4.28i)T \) |
good | 2 | \( 1 + 2.29T + 2T^{2} \) |
| 5 | \( 1 + (0.0873 + 0.0504i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.977 - 1.69i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.427 - 0.246i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 0.0391iT - 13T^{2} \) |
| 17 | \( 1 + (3.33 - 1.92i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + 5.30iT - 23T^{2} \) |
| 29 | \( 1 + (-3.27 - 5.66i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.634 + 0.366i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2.10iT - 37T^{2} \) |
| 41 | \( 1 + (2.92 - 5.05i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 12.1T + 43T^{2} \) |
| 47 | \( 1 + (8.31 - 4.80i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (4.01 - 6.95i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (6.33 - 10.9i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (1.11 + 1.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 - 0.750iT - 67T^{2} \) |
| 71 | \( 1 + (4.08 + 7.07i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.16 - 2.02i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 16.3iT - 79T^{2} \) |
| 83 | \( 1 + (-6.89 - 3.98i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.30 + 3.99i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.44iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85306389400615890991010555190, −10.16538449168248114161567514190, −9.411776332074460200586805050831, −8.520842377870928942469496389382, −8.056547583303870998632380526456, −6.77685756378130302119454977411, −6.15078711893495527470260233095, −4.56626707050066047381738613873, −2.88378444774767700888725711371, −1.60082177799139441748658769204,
0.30906151910721334036085849810, 1.88904592956114986326301094055, 3.41046004159702356923390988792, 4.91444813266226114401686483702, 6.49324412241245843777843511059, 7.13680614397868097990203814072, 7.976661032878942667786741534851, 8.933121452122159656921649041704, 9.637212005898875749249286677457, 10.28473959961813557208040809074