L(s) = 1 | + 0.808·2-s − 1.34·4-s + (−1.00 − 0.578i)5-s + (−0.183 + 0.316i)7-s − 2.70·8-s + (−0.810 − 0.467i)10-s + (−1.84 − 1.06i)11-s + 5.93i·13-s + (−0.147 + 0.256i)14-s + 0.507·16-s + (−5.82 + 3.36i)17-s + (−1.77 + 3.97i)19-s + (1.35 + 0.779i)20-s + (−1.49 − 0.861i)22-s − 0.458i·23-s + ⋯ |
L(s) = 1 | + 0.571·2-s − 0.673·4-s + (−0.448 − 0.258i)5-s + (−0.0691 + 0.119i)7-s − 0.956·8-s + (−0.256 − 0.147i)10-s + (−0.556 − 0.321i)11-s + 1.64i·13-s + (−0.0395 + 0.0684i)14-s + 0.126·16-s + (−1.41 + 0.816i)17-s + (−0.407 + 0.913i)19-s + (0.301 + 0.174i)20-s + (−0.317 − 0.183i)22-s − 0.0956i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.877 - 0.479i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.877 - 0.479i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0874852 + 0.342864i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0874852 + 0.342864i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (1.77 - 3.97i)T \) |
good | 2 | \( 1 - 0.808T + 2T^{2} \) |
| 5 | \( 1 + (1.00 + 0.578i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (0.183 - 0.316i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (1.84 + 1.06i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.93iT - 13T^{2} \) |
| 17 | \( 1 + (5.82 - 3.36i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 + 0.458iT - 23T^{2} \) |
| 29 | \( 1 + (4.29 + 7.44i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.53 - 2.61i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 5.13iT - 37T^{2} \) |
| 41 | \( 1 + (-0.345 + 0.598i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 4.70T + 43T^{2} \) |
| 47 | \( 1 + (-1.27 + 0.734i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.73 + 3.00i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.33 - 7.50i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.81 - 8.34i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + 8.23iT - 67T^{2} \) |
| 71 | \( 1 + (-2.74 - 4.75i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (2.46 + 4.26i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 5.65iT - 79T^{2} \) |
| 83 | \( 1 + (1.26 + 0.731i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.45 + 9.44i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 0.313iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.43518455356358487569975503539, −10.45939335205193942317379389308, −9.250964151707967288902627378109, −8.738812880525373471817378151325, −7.77467178608146828770884112572, −6.44635893862705234452366219011, −5.63742495799338604919511691932, −4.25923834849519036057174251095, −4.01245746841492617311240243180, −2.21302378620636673361064811286,
0.16806081711569842201870303121, 2.70699843771929248794010203399, 3.71014873492874405423087634966, 4.85484357081804229501011114129, 5.53187126570232081295133782104, 6.87346826296275329696724912917, 7.77039833291867882358698666500, 8.777138496600348622030350495464, 9.573484071131406490268865023440, 10.69030760175298760727066130698