L(s) = 1 | − 2.58·2-s + 4.66·4-s + (1.09 + 0.629i)5-s + (0.0839 − 0.145i)7-s − 6.89·8-s + (−2.81 − 1.62i)10-s + (3.58 + 2.07i)11-s + 5.36i·13-s + (−0.216 + 0.375i)14-s + 8.46·16-s + (−0.632 + 0.364i)17-s + (0.391 − 4.34i)19-s + (5.09 + 2.94i)20-s + (−9.26 − 5.35i)22-s + 4.93i·23-s + ⋯ |
L(s) = 1 | − 1.82·2-s + 2.33·4-s + (0.487 + 0.281i)5-s + (0.0317 − 0.0549i)7-s − 2.43·8-s + (−0.890 − 0.514i)10-s + (1.08 + 0.624i)11-s + 1.48i·13-s + (−0.0579 + 0.100i)14-s + 2.11·16-s + (−0.153 + 0.0885i)17-s + (0.0897 − 0.995i)19-s + (1.13 + 0.657i)20-s + (−1.97 − 1.14i)22-s + 1.02i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.460 - 0.887i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 513 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.460 - 0.887i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.569993 + 0.346320i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.569993 + 0.346320i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (-0.391 + 4.34i)T \) |
good | 2 | \( 1 + 2.58T + 2T^{2} \) |
| 5 | \( 1 + (-1.09 - 0.629i)T + (2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (-0.0839 + 0.145i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.58 - 2.07i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 5.36iT - 13T^{2} \) |
| 17 | \( 1 + (0.632 - 0.364i)T + (8.5 - 14.7i)T^{2} \) |
| 23 | \( 1 - 4.93iT - 23T^{2} \) |
| 29 | \( 1 + (2.05 + 3.56i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (4.96 - 2.86i)T + (15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.98iT - 37T^{2} \) |
| 41 | \( 1 + (-3.69 + 6.40i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 - 11.1T + 43T^{2} \) |
| 47 | \( 1 + (1.95 - 1.13i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.41 - 5.90i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.693 + 1.20i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.23 - 5.59i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 - 8.03iT - 67T^{2} \) |
| 71 | \( 1 + (-6.11 - 10.5i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (1.47 + 2.54i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + 1.03iT - 79T^{2} \) |
| 83 | \( 1 + (-7.02 - 4.05i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (0.114 - 0.197i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 18.4iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90772293851199965838275499388, −9.773651825742971079160512004833, −9.362887503543894935954694678227, −8.709479889007961507632159634779, −7.40220958625549434179860019584, −6.88513583175258371587881514888, −6.01445713054637952456494656963, −4.20144694568377928061917045064, −2.42175600732633709589005070576, −1.43242320168513947978298641768,
0.77153376877955486880888652488, 2.06625301967356248583744693769, 3.52800022281757022157536383594, 5.57346295327550923758664694546, 6.33040122073410436494112075874, 7.48883454952845757525393953443, 8.208781351966657505447943207797, 9.096427223959760986021720672811, 9.603985498586581982771807577657, 10.63125569246897888357928487659