L(s) = 1 | + (4.47 − 4.47i)3-s + (−7 − 7i)5-s + 8.94i·7-s − 13.0i·9-s + (40.2 + 40.2i)11-s + (−45 + 45i)13-s − 62.6·15-s − 16·17-s + (−76.0 + 76.0i)19-s + (40.0 + 40.0i)21-s − 8.94i·23-s − 27i·25-s + (62.6 + 62.6i)27-s + (−67 + 67i)29-s − 304.·31-s + ⋯ |
L(s) = 1 | + (0.860 − 0.860i)3-s + (−0.626 − 0.626i)5-s + 0.482i·7-s − 0.481i·9-s + (1.10 + 1.10i)11-s + (−0.960 + 0.960i)13-s − 1.07·15-s − 0.228·17-s + (−0.917 + 0.917i)19-s + (0.415 + 0.415i)21-s − 0.0810i·23-s − 0.215i·25-s + (0.446 + 0.446i)27-s + (−0.429 + 0.429i)29-s − 1.76·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.517216393\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.517216393\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (-4.47 + 4.47i)T - 27iT^{2} \) |
| 5 | \( 1 + (7 + 7i)T + 125iT^{2} \) |
| 7 | \( 1 - 8.94iT - 343T^{2} \) |
| 11 | \( 1 + (-40.2 - 40.2i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (45 - 45i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 16T + 4.91e3T^{2} \) |
| 19 | \( 1 + (76.0 - 76.0i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 + 8.94iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (67 - 67i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 + 304.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (9 + 9i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 328iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (-174. - 174. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 - 411.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-407 - 407i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (523. + 523. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (589 - 589i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (-210. + 210. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 + 688. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 782iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 429.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (-22.3 + 22.3i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 510iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.21e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.67092341257268014904180995560, −9.179763728242032177867749853834, −9.068677225878005671931261731990, −7.83778286474576325878725049759, −7.27785193714597416890670234329, −6.29120456380256678174106337905, −4.74422320261319637981188967349, −3.93032259580527610682761549003, −2.31664770560685355047153664121, −1.55237870453555415733387352663,
0.40621589848088017111930718689, 2.55685516574066886675947304813, 3.61810407828075536878244882490, 4.09054860516159497268936359523, 5.54461639505563337640437216631, 6.87881027281081264597880881750, 7.63066947726003239474294864112, 8.789060974060028649854387715322, 9.235030646216774357522232324071, 10.44595507994162638112844150984