L(s) = 1 | + (−4.47 + 4.47i)3-s + (−7 − 7i)5-s − 8.94i·7-s − 13.0i·9-s + (−40.2 − 40.2i)11-s + (−45 + 45i)13-s + 62.6·15-s − 16·17-s + (76.0 − 76.0i)19-s + (40.0 + 40.0i)21-s + 8.94i·23-s − 27i·25-s + (−62.6 − 62.6i)27-s + (−67 + 67i)29-s + 304.·31-s + ⋯ |
L(s) = 1 | + (−0.860 + 0.860i)3-s + (−0.626 − 0.626i)5-s − 0.482i·7-s − 0.481i·9-s + (−1.10 − 1.10i)11-s + (−0.960 + 0.960i)13-s + 1.07·15-s − 0.228·17-s + (0.917 − 0.917i)19-s + (0.415 + 0.415i)21-s + 0.0810i·23-s − 0.215i·25-s + (−0.446 − 0.446i)27-s + (−0.429 + 0.429i)29-s + 1.76·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 512 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.382 - 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6379991701\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6379991701\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
good | 3 | \( 1 + (4.47 - 4.47i)T - 27iT^{2} \) |
| 5 | \( 1 + (7 + 7i)T + 125iT^{2} \) |
| 7 | \( 1 + 8.94iT - 343T^{2} \) |
| 11 | \( 1 + (40.2 + 40.2i)T + 1.33e3iT^{2} \) |
| 13 | \( 1 + (45 - 45i)T - 2.19e3iT^{2} \) |
| 17 | \( 1 + 16T + 4.91e3T^{2} \) |
| 19 | \( 1 + (-76.0 + 76.0i)T - 6.85e3iT^{2} \) |
| 23 | \( 1 - 8.94iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (67 - 67i)T - 2.43e4iT^{2} \) |
| 31 | \( 1 - 304.T + 2.97e4T^{2} \) |
| 37 | \( 1 + (9 + 9i)T + 5.06e4iT^{2} \) |
| 41 | \( 1 - 328iT - 6.89e4T^{2} \) |
| 43 | \( 1 + (174. + 174. i)T + 7.95e4iT^{2} \) |
| 47 | \( 1 + 411.T + 1.03e5T^{2} \) |
| 53 | \( 1 + (-407 - 407i)T + 1.48e5iT^{2} \) |
| 59 | \( 1 + (-523. - 523. i)T + 2.05e5iT^{2} \) |
| 61 | \( 1 + (589 - 589i)T - 2.26e5iT^{2} \) |
| 67 | \( 1 + (210. - 210. i)T - 3.00e5iT^{2} \) |
| 71 | \( 1 - 688. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + 782iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 429.T + 4.93e5T^{2} \) |
| 83 | \( 1 + (22.3 - 22.3i)T - 5.71e5iT^{2} \) |
| 89 | \( 1 - 510iT - 7.04e5T^{2} \) |
| 97 | \( 1 - 1.21e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62956993728188526933754817532, −9.990587350493314470122382894444, −8.942088723491057688332755058341, −7.996540539316849224712407606687, −7.02336110499907030934847945585, −5.72658803153033367460250323147, −4.83287408880591062696330494354, −4.30019901143732261886021228806, −2.84129864921127716709083890819, −0.69683083385847460203116310939,
0.35549380936840880650823049417, 2.07405449802428428582102697677, 3.24963419522186573071383279743, 4.90308200853927131452359115122, 5.66061489569108722202138577985, 6.78537895226381582252294155515, 7.52446327955591466527962752594, 8.078597998422646231060493811666, 9.734526316899985074926367763256, 10.35245051787633491742727808924