L(s) = 1 | + 4.81i·2-s + (26.1 − 6.60i)3-s + 40.8·4-s + 186. i·5-s + (31.7 + 126. i)6-s − 455.·7-s + 504. i·8-s + (641. − 345. i)9-s − 898.·10-s + 546. i·11-s + (1.06e3 − 269. i)12-s + 1.27e3·13-s − 2.19e3i·14-s + (1.23e3 + 4.88e3i)15-s + 182.·16-s + 1.19e3i·17-s + ⋯ |
L(s) = 1 | + 0.601i·2-s + (0.969 − 0.244i)3-s + 0.637·4-s + 1.49i·5-s + (0.147 + 0.583i)6-s − 1.32·7-s + 0.985i·8-s + (0.880 − 0.474i)9-s − 0.898·10-s + 0.410i·11-s + (0.618 − 0.155i)12-s + 0.579·13-s − 0.799i·14-s + (0.365 + 1.44i)15-s + 0.0446·16-s + 0.242i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.244 - 0.969i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.244 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(1.55923 + 2.00134i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.55923 + 2.00134i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-26.1 + 6.60i)T \) |
| 17 | \( 1 - 1.19e3iT \) |
good | 2 | \( 1 - 4.81iT - 64T^{2} \) |
| 5 | \( 1 - 186. iT - 1.56e4T^{2} \) |
| 7 | \( 1 + 455.T + 1.17e5T^{2} \) |
| 11 | \( 1 - 546. iT - 1.77e6T^{2} \) |
| 13 | \( 1 - 1.27e3T + 4.82e6T^{2} \) |
| 19 | \( 1 + 3.93e3T + 4.70e7T^{2} \) |
| 23 | \( 1 + 6.46e3iT - 1.48e8T^{2} \) |
| 29 | \( 1 - 2.82e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 - 4.52e4T + 8.87e8T^{2} \) |
| 37 | \( 1 - 8.61e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + 9.39e4iT - 4.75e9T^{2} \) |
| 43 | \( 1 + 9.11e4T + 6.32e9T^{2} \) |
| 47 | \( 1 + 1.26e4iT - 1.07e10T^{2} \) |
| 53 | \( 1 + 1.46e5iT - 2.21e10T^{2} \) |
| 59 | \( 1 + 3.23e5iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 1.32e5T + 5.15e10T^{2} \) |
| 67 | \( 1 + 5.38e4T + 9.04e10T^{2} \) |
| 71 | \( 1 + 4.49e5iT - 1.28e11T^{2} \) |
| 73 | \( 1 - 4.16e5T + 1.51e11T^{2} \) |
| 79 | \( 1 - 2.93e5T + 2.43e11T^{2} \) |
| 83 | \( 1 - 9.52e5iT - 3.26e11T^{2} \) |
| 89 | \( 1 - 8.43e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + 3.48e5T + 8.32e11T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.80452442044154568075761421621, −13.76487054948613268983316264356, −12.48872019934906536554046562654, −10.86320612448081573244833058056, −9.829473185565949932041098512959, −8.193373939407292895069652199637, −6.81734870034233963344942754318, −6.47798684330111718473064819244, −3.42200092687094909758318284226, −2.39230367534542612278756057097,
1.04367145489773406587821239285, 2.80686784469262550704765074532, 4.16618708865636947768674131306, 6.28339848403332472133080774381, 8.057367188106144065715171570476, 9.274829143502561774105905758755, 10.08410696397077356826589322862, 11.74544016452227187369223631021, 12.99732752395577691972893933074, 13.36859411893640137465114638332