L(s) = 1 | − 2.55·2-s + (−2.60 − 1.48i)3-s + 2.52·4-s + (5.68 + 5.68i)5-s + (6.66 + 3.78i)6-s + (1.53 + 1.53i)7-s + 3.75·8-s + (4.61 + 7.72i)9-s + (−14.5 − 14.5i)10-s + (−9.63 + 9.63i)11-s + (−6.59 − 3.74i)12-s + 10.8·13-s + (−3.92 − 3.92i)14-s + (−6.41 − 23.2i)15-s − 19.7·16-s + (12.9 − 10.9i)17-s + ⋯ |
L(s) = 1 | − 1.27·2-s + (−0.869 − 0.493i)3-s + 0.632·4-s + (1.13 + 1.13i)5-s + (1.11 + 0.630i)6-s + (0.219 + 0.219i)7-s + 0.469·8-s + (0.513 + 0.858i)9-s + (−1.45 − 1.45i)10-s + (−0.876 + 0.876i)11-s + (−0.549 − 0.311i)12-s + 0.834·13-s + (−0.280 − 0.280i)14-s + (−0.427 − 1.54i)15-s − 1.23·16-s + (0.762 − 0.646i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.660 - 0.751i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.660 - 0.751i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.490465 + 0.221920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.490465 + 0.221920i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (2.60 + 1.48i)T \) |
| 17 | \( 1 + (-12.9 + 10.9i)T \) |
good | 2 | \( 1 + 2.55T + 4T^{2} \) |
| 5 | \( 1 + (-5.68 - 5.68i)T + 25iT^{2} \) |
| 7 | \( 1 + (-1.53 - 1.53i)T + 49iT^{2} \) |
| 11 | \( 1 + (9.63 - 9.63i)T - 121iT^{2} \) |
| 13 | \( 1 - 10.8T + 169T^{2} \) |
| 19 | \( 1 - 22.1iT - 361T^{2} \) |
| 23 | \( 1 + (9.91 - 9.91i)T - 529iT^{2} \) |
| 29 | \( 1 + (-4.19 - 4.19i)T + 841iT^{2} \) |
| 31 | \( 1 + (-13.4 + 13.4i)T - 961iT^{2} \) |
| 37 | \( 1 + (-6.27 + 6.27i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (17.0 - 17.0i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + 30.2iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 57.7iT - 2.20e3T^{2} \) |
| 53 | \( 1 + 74.4T + 2.80e3T^{2} \) |
| 59 | \( 1 - 84.8T + 3.48e3T^{2} \) |
| 61 | \( 1 + (23.5 + 23.5i)T + 3.72e3iT^{2} \) |
| 67 | \( 1 - 80.1T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-42.8 - 42.8i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + (84.0 - 84.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + (31.8 + 31.8i)T + 6.24e3iT^{2} \) |
| 83 | \( 1 - 46.3T + 6.88e3T^{2} \) |
| 89 | \( 1 + 110. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-57.3 + 57.3i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.82790135870753035384387659918, −14.19819419251499192845399377276, −13.14840470290187154989781331647, −11.54352146195930020236420395365, −10.33076348007592820491695249857, −9.916326533341962780732699408973, −7.984073724580947551663981698521, −6.87089420697374986377291187530, −5.52171544024330222933718027216, −1.91531148190911712509107658719,
1.01454088253031458862148546103, 4.84892170559117413892649708658, 6.12553512086777460396788743574, 8.212844853794605855301801286781, 9.221626813478002040134133467095, 10.23842348049191540366091426547, 11.09042335487159391827179614689, 12.79342732955840723298356264766, 13.77894571682899637402319889073, 15.88221359265855280062955386339