Properties

Label 2-51-51.44-c1-0-0
Degree $2$
Conductor $51$
Sign $0.850 - 0.525i$
Analytic cond. $0.407237$
Root an. cond. $0.638151$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.774 + 0.320i)2-s + (0.00133 + 1.73i)3-s + (−0.917 − 0.917i)4-s + (−0.159 − 0.802i)5-s + (−0.554 + 1.34i)6-s + (0.191 + 0.0380i)7-s + (−1.05 − 2.55i)8-s + (−2.99 + 0.00463i)9-s + (0.133 − 0.672i)10-s + (3.67 − 2.45i)11-s + (1.58 − 1.58i)12-s + (−3.75 + 3.75i)13-s + (0.136 + 0.0909i)14-s + (1.38 − 0.277i)15-s + 0.276i·16-s + (−2.89 + 2.93i)17-s + ⋯
L(s)  = 1  + (0.547 + 0.226i)2-s + (0.000772 + 0.999i)3-s + (−0.458 − 0.458i)4-s + (−0.0713 − 0.358i)5-s + (−0.226 + 0.547i)6-s + (0.0723 + 0.0143i)7-s + (−0.374 − 0.902i)8-s + (−0.999 + 0.00154i)9-s + (0.0423 − 0.212i)10-s + (1.10 − 0.739i)11-s + (0.458 − 0.458i)12-s + (−1.04 + 1.04i)13-s + (0.0363 + 0.0243i)14-s + (0.358 − 0.0716i)15-s + 0.0690i·16-s + (−0.701 + 0.712i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.850 - 0.525i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51\)    =    \(3 \cdot 17\)
Sign: $0.850 - 0.525i$
Analytic conductor: \(0.407237\)
Root analytic conductor: \(0.638151\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{51} (44, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 51,\ (\ :1/2),\ 0.850 - 0.525i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.908748 + 0.258161i\)
\(L(\frac12)\) \(\approx\) \(0.908748 + 0.258161i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.00133 - 1.73i)T \)
17 \( 1 + (2.89 - 2.93i)T \)
good2 \( 1 + (-0.774 - 0.320i)T + (1.41 + 1.41i)T^{2} \)
5 \( 1 + (0.159 + 0.802i)T + (-4.61 + 1.91i)T^{2} \)
7 \( 1 + (-0.191 - 0.0380i)T + (6.46 + 2.67i)T^{2} \)
11 \( 1 + (-3.67 + 2.45i)T + (4.20 - 10.1i)T^{2} \)
13 \( 1 + (3.75 - 3.75i)T - 13iT^{2} \)
19 \( 1 + (-0.210 + 0.508i)T + (-13.4 - 13.4i)T^{2} \)
23 \( 1 + (-2.29 - 3.43i)T + (-8.80 + 21.2i)T^{2} \)
29 \( 1 + (-0.606 + 0.120i)T + (26.7 - 11.0i)T^{2} \)
31 \( 1 + (-0.369 + 0.553i)T + (-11.8 - 28.6i)T^{2} \)
37 \( 1 + (-1.63 - 1.09i)T + (14.1 + 34.1i)T^{2} \)
41 \( 1 + (-1.55 + 7.84i)T + (-37.8 - 15.6i)T^{2} \)
43 \( 1 + (2.95 + 7.13i)T + (-30.4 + 30.4i)T^{2} \)
47 \( 1 + (-7.05 - 7.05i)T + 47iT^{2} \)
53 \( 1 + (10.7 + 4.43i)T + (37.4 + 37.4i)T^{2} \)
59 \( 1 + (0.0995 + 0.240i)T + (-41.7 + 41.7i)T^{2} \)
61 \( 1 + (2.05 - 10.3i)T + (-56.3 - 23.3i)T^{2} \)
67 \( 1 + 5.40iT - 67T^{2} \)
71 \( 1 + (-3.61 + 5.41i)T + (-27.1 - 65.5i)T^{2} \)
73 \( 1 + (-11.3 + 2.26i)T + (67.4 - 27.9i)T^{2} \)
79 \( 1 + (-6.00 - 8.98i)T + (-30.2 + 72.9i)T^{2} \)
83 \( 1 + (-1.05 + 2.55i)T + (-58.6 - 58.6i)T^{2} \)
89 \( 1 + (3.69 - 3.69i)T - 89iT^{2} \)
97 \( 1 + (-0.481 - 2.42i)T + (-89.6 + 37.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.42939020469832035284056630619, −14.52062418228290079978889926711, −13.78037987273606237486041919731, −12.22766717203138001850021520930, −10.95388392035019329883961547634, −9.512733236206612700202399056418, −8.826416197463637415368115377997, −6.45325355165928309499655921892, −5.00773160805157211809756982919, −3.93511030605351382362489911689, 2.83980881454001982835488196894, 4.86442545256790819917966962500, 6.72599913041588450115626916559, 7.921370334924943884725257659689, 9.317362172313225985405825069597, 11.24650325261740251578003965582, 12.31273827084360222774381436698, 12.96294925731090844698797950468, 14.23341696426991141032208899401, 14.88558527547928096601797895698

Graph of the $Z$-function along the critical line