Properties

Label 2-507-169.4-c1-0-26
Degree $2$
Conductor $507$
Sign $-0.980 - 0.195i$
Analytic cond. $4.04841$
Root an. cond. $2.01206$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.756 + 0.0304i)2-s + (0.278 − 0.960i)3-s + (−1.42 − 0.114i)4-s + (−1.80 − 0.683i)5-s + (0.239 − 0.717i)6-s + (0.988 + 2.32i)7-s + (−2.57 − 0.312i)8-s + (−0.845 − 0.534i)9-s + (−1.34 − 0.571i)10-s + (−3.17 − 5.02i)11-s + (−0.506 + 1.33i)12-s + (0.984 + 3.46i)13-s + (0.676 + 1.78i)14-s + (−1.15 + 1.54i)15-s + (0.879 + 0.142i)16-s + (−6.63 + 2.82i)17-s + ⋯
L(s)  = 1  + (0.534 + 0.0215i)2-s + (0.160 − 0.554i)3-s + (−0.711 − 0.0574i)4-s + (−0.806 − 0.305i)5-s + (0.0978 − 0.293i)6-s + (0.373 + 0.877i)7-s + (−0.910 − 0.110i)8-s + (−0.281 − 0.178i)9-s + (−0.424 − 0.180i)10-s + (−0.957 − 1.51i)11-s + (−0.146 + 0.385i)12-s + (0.272 + 0.962i)13-s + (0.180 + 0.477i)14-s + (−0.299 + 0.397i)15-s + (0.219 + 0.0357i)16-s + (−1.60 + 0.685i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.980 - 0.195i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 507 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.980 - 0.195i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(507\)    =    \(3 \cdot 13^{2}\)
Sign: $-0.980 - 0.195i$
Analytic conductor: \(4.04841\)
Root analytic conductor: \(2.01206\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{507} (4, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 507,\ (\ :1/2),\ -0.980 - 0.195i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0175299 + 0.177539i\)
\(L(\frac12)\) \(\approx\) \(0.0175299 + 0.177539i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.278 + 0.960i)T \)
13 \( 1 + (-0.984 - 3.46i)T \)
good2 \( 1 + (-0.756 - 0.0304i)T + (1.99 + 0.160i)T^{2} \)
5 \( 1 + (1.80 + 0.683i)T + (3.74 + 3.31i)T^{2} \)
7 \( 1 + (-0.988 - 2.32i)T + (-4.84 + 5.04i)T^{2} \)
11 \( 1 + (3.17 + 5.02i)T + (-4.71 + 9.93i)T^{2} \)
17 \( 1 + (6.63 - 2.82i)T + (11.7 - 12.2i)T^{2} \)
19 \( 1 + (4.97 - 2.87i)T + (9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.77 + 4.80i)T + (-11.5 - 19.9i)T^{2} \)
29 \( 1 + (0.236 - 5.88i)T + (-28.9 - 2.33i)T^{2} \)
31 \( 1 + (6.21 + 7.01i)T + (-3.73 + 30.7i)T^{2} \)
37 \( 1 + (-5.74 + 1.17i)T + (34.0 - 14.5i)T^{2} \)
41 \( 1 + (3.28 + 0.952i)T + (34.6 + 21.9i)T^{2} \)
43 \( 1 + (1.59 - 7.81i)T + (-39.5 - 16.8i)T^{2} \)
47 \( 1 + (-4.44 + 3.06i)T + (16.6 - 43.9i)T^{2} \)
53 \( 1 + (-1.15 + 9.51i)T + (-51.4 - 12.6i)T^{2} \)
59 \( 1 + (-0.547 - 3.36i)T + (-55.9 + 18.6i)T^{2} \)
61 \( 1 + (-0.266 + 0.200i)T + (16.9 - 58.5i)T^{2} \)
67 \( 1 + (0.813 + 10.0i)T + (-66.1 + 10.7i)T^{2} \)
71 \( 1 + (2.56 - 2.45i)T + (2.85 - 70.9i)T^{2} \)
73 \( 1 + (-2.44 + 4.66i)T + (-41.4 - 60.0i)T^{2} \)
79 \( 1 + (-0.769 - 1.11i)T + (-28.0 + 73.8i)T^{2} \)
83 \( 1 + (-2.02 + 8.22i)T + (-73.4 - 38.5i)T^{2} \)
89 \( 1 + (0.207 + 0.119i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-0.273 - 0.223i)T + (19.4 + 95.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.79221887989676470701664068701, −9.074076010840784960646659668506, −8.552613853927231593080260532592, −8.112685732038763118712233293480, −6.49293935734024305138485234987, −5.74699623103986840813274496301, −4.60896520620336448287784330022, −3.71147265805988728865365238259, −2.29059633348079707807446120453, −0.084490387659648233950476851658, 2.66834984423809495833787480111, 3.96746351322501943355513034341, 4.52438194427415593984981409237, 5.35543709801094670624079535532, 7.01879204203397788210898812350, 7.73185993062263267675894967589, 8.722249991174428553261800183499, 9.657594796586141865092306641986, 10.63781793440920214401238804690, 11.19011793720383759945575875819

Graph of the $Z$-function along the critical line