Properties

Label 8-5040e4-1.1-c1e4-0-7
Degree $8$
Conductor $6.452\times 10^{14}$
Sign $1$
Analytic cond. $2.62319\times 10^{6}$
Root an. cond. $6.34386$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 24·23-s − 10·25-s − 4·49-s − 24·53-s + 16·79-s − 48·107-s − 40·109-s + 24·113-s + 40·121-s + 127-s + 131-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 32·169-s + 173-s + 179-s + 181-s + 191-s + 193-s + 197-s + 199-s + 211-s + ⋯
L(s)  = 1  + 5.00·23-s − 2·25-s − 4/7·49-s − 3.29·53-s + 1.80·79-s − 4.64·107-s − 3.83·109-s + 2.25·113-s + 3.63·121-s + 0.0887·127-s + 0.0873·131-s + 0.0854·137-s + 0.0848·139-s + 0.0819·149-s + 0.0813·151-s + 0.0798·157-s + 0.0783·163-s + 0.0773·167-s − 2.46·169-s + 0.0760·173-s + 0.0747·179-s + 0.0743·181-s + 0.0723·191-s + 0.0719·193-s + 0.0712·197-s + 0.0708·199-s + 0.0688·211-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(2^{16} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{4} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(2^{16} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(2.62319\times 10^{6}\)
Root analytic conductor: \(6.34386\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 2^{16} \cdot 3^{8} \cdot 5^{4} \cdot 7^{4} ,\ ( \ : 1/2, 1/2, 1/2, 1/2 ),\ 1 )\)

Particular Values

\(L(1)\) \(\approx\) \(3.692591682\)
\(L(\frac12)\) \(\approx\) \(3.692591682\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5$C_2$ \( ( 1 + p T^{2} )^{2} \)
7$C_2^2$ \( 1 + 4 T^{2} + p^{2} T^{4} \)
good11$C_2^2$ \( ( 1 - 20 T^{2} + p^{2} T^{4} )^{2} \)
13$C_2^2$ \( ( 1 + 16 T^{2} + p^{2} T^{4} )^{2} \)
17$C_2^2$ \( ( 1 - 14 T^{2} + p^{2} T^{4} )^{2} \)
19$C_2$ \( ( 1 - p T^{2} )^{4} \)
23$C_2$ \( ( 1 - 6 T + p T^{2} )^{4} \)
29$C_2^2$ \( ( 1 - 50 T^{2} + p^{2} T^{4} )^{2} \)
31$C_2$ \( ( 1 - p T^{2} )^{4} \)
37$C_2^2$ \( ( 1 - 56 T^{2} + p^{2} T^{4} )^{2} \)
41$C_2^2$ \( ( 1 - 8 T^{2} + p^{2} T^{4} )^{2} \)
43$C_2$ \( ( 1 - 10 T + p T^{2} )^{2}( 1 + 10 T + p T^{2} )^{2} \)
47$C_2^2$ \( ( 1 - 74 T^{2} + p^{2} T^{4} )^{2} \)
53$C_2$ \( ( 1 + 6 T + p T^{2} )^{4} \)
59$C_2^2$ \( ( 1 + 28 T^{2} + p^{2} T^{4} )^{2} \)
61$C_2$ \( ( 1 - 8 T + p T^{2} )^{2}( 1 + 8 T + p T^{2} )^{2} \)
67$C_2$ \( ( 1 - p T^{2} )^{4} \)
71$C_2^2$ \( ( 1 - 110 T^{2} + p^{2} T^{4} )^{2} \)
73$C_2^2$ \( ( 1 + 106 T^{2} + p^{2} T^{4} )^{2} \)
79$C_2$ \( ( 1 - 4 T + p T^{2} )^{4} \)
83$C_2^2$ \( ( 1 - 86 T^{2} + p^{2} T^{4} )^{2} \)
89$C_2^2$ \( ( 1 + 88 T^{2} + p^{2} T^{4} )^{2} \)
97$C_2^2$ \( ( 1 + 34 T^{2} + p^{2} T^{4} )^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−5.79865698310958608378890611867, −5.64633420223358100477090752055, −5.27605654847016215946260205112, −5.09262789493234766328709347162, −5.05952789454195759461930693067, −5.02194831694716501588023142008, −4.56985802559239277515004276227, −4.53360190632564651329760997313, −4.36492441558904919274285654059, −4.05279114012434866426237284558, −3.76227282588229410019788834516, −3.45628457355621137016174814386, −3.37815400944779127426623158061, −3.26217684815086768875138559224, −3.07851626062521577420700557667, −2.75450030612300859736008839951, −2.47012138366206564210966438207, −2.29691893443410717270073132287, −2.22177909883396032332225653666, −1.50496017323987268878661003682, −1.47673601985993294559826549583, −1.33264899731330445332699026825, −1.06551986943002071968702390171, −0.48644593039133164950878653791, −0.32535678152412635215937205738, 0.32535678152412635215937205738, 0.48644593039133164950878653791, 1.06551986943002071968702390171, 1.33264899731330445332699026825, 1.47673601985993294559826549583, 1.50496017323987268878661003682, 2.22177909883396032332225653666, 2.29691893443410717270073132287, 2.47012138366206564210966438207, 2.75450030612300859736008839951, 3.07851626062521577420700557667, 3.26217684815086768875138559224, 3.37815400944779127426623158061, 3.45628457355621137016174814386, 3.76227282588229410019788834516, 4.05279114012434866426237284558, 4.36492441558904919274285654059, 4.53360190632564651329760997313, 4.56985802559239277515004276227, 5.02194831694716501588023142008, 5.05952789454195759461930693067, 5.09262789493234766328709347162, 5.27605654847016215946260205112, 5.64633420223358100477090752055, 5.79865698310958608378890611867

Graph of the $Z$-function along the critical line