Properties

Label 2-5040-28.27-c1-0-60
Degree $2$
Conductor $5040$
Sign $-0.377 + 0.925i$
Analytic cond. $40.2446$
Root an. cond. $6.34386$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + i·5-s + (−2.44 − i)7-s − 2.44i·11-s + 4.44i·13-s − 6.89i·17-s + 4.44·19-s + 2i·23-s − 25-s + 6.89·29-s − 8.44·31-s + (1 − 2.44i)35-s + 6.89·37-s − 0.898i·41-s + 8i·43-s − 10.8·47-s + ⋯
L(s)  = 1  + 0.447i·5-s + (−0.925 − 0.377i)7-s − 0.738i·11-s + 1.23i·13-s − 1.67i·17-s + 1.02·19-s + 0.417i·23-s − 0.200·25-s + 1.28·29-s − 1.51·31-s + (0.169 − 0.414i)35-s + 1.13·37-s − 0.140i·41-s + 1.21i·43-s − 1.58·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.377 + 0.925i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5040 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.377 + 0.925i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5040\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 7\)
Sign: $-0.377 + 0.925i$
Analytic conductor: \(40.2446\)
Root analytic conductor: \(6.34386\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5040} (4591, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5040,\ (\ :1/2),\ -0.377 + 0.925i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8617163830\)
\(L(\frac12)\) \(\approx\) \(0.8617163830\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - iT \)
7 \( 1 + (2.44 + i)T \)
good11 \( 1 + 2.44iT - 11T^{2} \)
13 \( 1 - 4.44iT - 13T^{2} \)
17 \( 1 + 6.89iT - 17T^{2} \)
19 \( 1 - 4.44T + 19T^{2} \)
23 \( 1 - 2iT - 23T^{2} \)
29 \( 1 - 6.89T + 29T^{2} \)
31 \( 1 + 8.44T + 31T^{2} \)
37 \( 1 - 6.89T + 37T^{2} \)
41 \( 1 + 0.898iT - 41T^{2} \)
43 \( 1 - 8iT - 43T^{2} \)
47 \( 1 + 10.8T + 47T^{2} \)
53 \( 1 + 10.4T + 53T^{2} \)
59 \( 1 + 4.89T + 59T^{2} \)
61 \( 1 - 12.8iT - 61T^{2} \)
67 \( 1 + 15.7iT - 67T^{2} \)
71 \( 1 + 6.44iT - 71T^{2} \)
73 \( 1 - 5.34iT - 73T^{2} \)
79 \( 1 + 9.79iT - 79T^{2} \)
83 \( 1 - 2.89T + 83T^{2} \)
89 \( 1 + 15.7iT - 89T^{2} \)
97 \( 1 + 2.65iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79069080496879827299031579835, −7.27862995282422901853912474652, −6.56966226774774897768807993415, −6.04556646249398503124329911588, −5.03716508704545413344171983321, −4.27991440720363098995316670129, −3.17476686192139266355537929114, −2.94205284284859347523633900128, −1.51227194499763577830769106397, −0.25215836141642720255410824053, 1.10509794695140586950184648073, 2.23988732184253776654586199273, 3.20906622103601452800787661221, 3.86730803271881813378660316222, 4.90550733485981515304289667271, 5.57075626307488376934795879263, 6.25930346830038984124070584949, 6.95475452410035741574159458674, 7.949721875606733321024512225122, 8.294318859091213755903408953118

Graph of the $Z$-function along the critical line