| L(s) = 1 | + (−0.238 − 1.39i)2-s + (0.745 + 0.118i)3-s + (−1.88 + 0.664i)4-s + (−0.0129 − 1.06i)6-s + (−2.75 + 2.75i)7-s + (1.37 + 2.47i)8-s + (−2.31 − 0.750i)9-s + (0.712 − 0.231i)11-s + (−1.48 + 0.272i)12-s + (0.753 + 1.47i)13-s + (4.49 + 3.18i)14-s + (3.11 − 2.50i)16-s + (0.715 + 4.51i)17-s + (−0.496 + 3.40i)18-s + (2.96 + 2.15i)19-s + ⋯ |
| L(s) = 1 | + (−0.168 − 0.985i)2-s + (0.430 + 0.0681i)3-s + (−0.943 + 0.332i)4-s + (−0.00529 − 0.435i)6-s + (−1.04 + 1.04i)7-s + (0.486 + 0.873i)8-s + (−0.770 − 0.250i)9-s + (0.214 − 0.0698i)11-s + (−0.428 + 0.0786i)12-s + (0.208 + 0.409i)13-s + (1.20 + 0.851i)14-s + (0.779 − 0.626i)16-s + (0.173 + 1.09i)17-s + (−0.116 + 0.801i)18-s + (0.679 + 0.493i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 500 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.586 - 0.810i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 500 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.586 - 0.810i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.721931 + 0.368607i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.721931 + 0.368607i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.238 + 1.39i)T \) |
| 5 | \( 1 \) |
| good | 3 | \( 1 + (-0.745 - 0.118i)T + (2.85 + 0.927i)T^{2} \) |
| 7 | \( 1 + (2.75 - 2.75i)T - 7iT^{2} \) |
| 11 | \( 1 + (-0.712 + 0.231i)T + (8.89 - 6.46i)T^{2} \) |
| 13 | \( 1 + (-0.753 - 1.47i)T + (-7.64 + 10.5i)T^{2} \) |
| 17 | \( 1 + (-0.715 - 4.51i)T + (-16.1 + 5.25i)T^{2} \) |
| 19 | \( 1 + (-2.96 - 2.15i)T + (5.87 + 18.0i)T^{2} \) |
| 23 | \( 1 + (4.00 - 7.86i)T + (-13.5 - 18.6i)T^{2} \) |
| 29 | \( 1 + (0.00370 + 0.00510i)T + (-8.96 + 27.5i)T^{2} \) |
| 31 | \( 1 + (1.08 - 1.49i)T + (-9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.22 + 1.64i)T + (21.7 - 29.9i)T^{2} \) |
| 41 | \( 1 + (1.93 - 5.94i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + (6.10 + 6.10i)T + 43iT^{2} \) |
| 47 | \( 1 + (0.184 - 1.16i)T + (-44.6 - 14.5i)T^{2} \) |
| 53 | \( 1 + (1.44 - 9.11i)T + (-50.4 - 16.3i)T^{2} \) |
| 59 | \( 1 + (-4.58 + 14.0i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (0.569 + 1.75i)T + (-49.3 + 35.8i)T^{2} \) |
| 67 | \( 1 + (-5.08 + 0.805i)T + (63.7 - 20.7i)T^{2} \) |
| 71 | \( 1 + (6.26 + 8.62i)T + (-21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (-6.26 - 3.19i)T + (42.9 + 59.0i)T^{2} \) |
| 79 | \( 1 + (2.90 - 2.11i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (0.308 + 1.94i)T + (-78.9 + 25.6i)T^{2} \) |
| 89 | \( 1 + (3.79 - 1.23i)T + (72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (-6.43 - 1.01i)T + (92.2 + 29.9i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.21441743377407366498113464064, −9.930587803987360953668319246174, −9.431072173015429863983174297541, −8.675545643864835428741627710606, −7.86584174277527097507346474475, −6.21960432693942991911892032612, −5.45003315119071807841494724625, −3.74733781865765515640259287212, −3.16200292333112962342604059123, −1.86969335683013801937489181838,
0.48344675034558058831449154951, 2.95505927771991863097305314718, 4.07883511079919041905869037981, 5.29220208744793899137617507133, 6.39407738930239879257249932840, 7.14183767393947321209351212711, 8.008300199884435879217671986231, 8.890529450864693240032473999008, 9.772512618599810984005299724614, 10.41958949109364727498786750637