L(s) = 1 | − 4·2-s + 2·3-s + 8·4-s − 5·5-s − 8·6-s + 6·7-s − 23·9-s + 20·10-s + 32·11-s + 16·12-s − 38·13-s − 24·14-s − 10·15-s − 64·16-s + 26·17-s + 92·18-s + 100·19-s − 40·20-s + 12·21-s − 128·22-s − 78·23-s + 25·25-s + 152·26-s − 100·27-s + 48·28-s − 50·29-s + 40·30-s + ⋯ |
L(s) = 1 | − 1.41·2-s + 0.384·3-s + 4-s − 0.447·5-s − 0.544·6-s + 0.323·7-s − 0.851·9-s + 0.632·10-s + 0.877·11-s + 0.384·12-s − 0.810·13-s − 0.458·14-s − 0.172·15-s − 16-s + 0.370·17-s + 1.20·18-s + 1.20·19-s − 0.447·20-s + 0.124·21-s − 1.24·22-s − 0.707·23-s + 1/5·25-s + 1.14·26-s − 0.712·27-s + 0.323·28-s − 0.320·29-s + 0.243·30-s + ⋯ |
Λ(s)=(=(5s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(5s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.4118613283 |
L(21) |
≈ |
0.4118613283 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1+pT |
good | 2 | 1+p2T+p3T2 |
| 3 | 1−2T+p3T2 |
| 7 | 1−6T+p3T2 |
| 11 | 1−32T+p3T2 |
| 13 | 1+38T+p3T2 |
| 17 | 1−26T+p3T2 |
| 19 | 1−100T+p3T2 |
| 23 | 1+78T+p3T2 |
| 29 | 1+50T+p3T2 |
| 31 | 1+108T+p3T2 |
| 37 | 1−266T+p3T2 |
| 41 | 1−22T+p3T2 |
| 43 | 1−442T+p3T2 |
| 47 | 1+514T+p3T2 |
| 53 | 1−2T+p3T2 |
| 59 | 1−500T+p3T2 |
| 61 | 1+518T+p3T2 |
| 67 | 1−126T+p3T2 |
| 71 | 1−412T+p3T2 |
| 73 | 1+878T+p3T2 |
| 79 | 1−600T+p3T2 |
| 83 | 1−282T+p3T2 |
| 89 | 1+150T+p3T2 |
| 97 | 1−386T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−24.53719930434053859680587393842, −22.51370164112999450106246009488, −20.24253638460194980453802000495, −19.39406085946034311371495394382, −17.80936002011203375803360468238, −16.49202096766309066044503764833, −14.42700262096538081523197027989, −11.52156568135998034842009582479, −9.415016459828749011981823541780, −7.80368599340441310768273857061,
7.80368599340441310768273857061, 9.415016459828749011981823541780, 11.52156568135998034842009582479, 14.42700262096538081523197027989, 16.49202096766309066044503764833, 17.80936002011203375803360468238, 19.39406085946034311371495394382, 20.24253638460194980453802000495, 22.51370164112999450106246009488, 24.53719930434053859680587393842