L(s) = 1 | + (2.40 + 2.40i)2-s + 7.55i·4-s + (−2.32 + 4.42i)5-s + (3.28 + 3.28i)7-s + (−8.54 + 8.54i)8-s + (−16.2 + 5.04i)10-s + 3.31·11-s + (−9.57 + 9.57i)13-s + 15.8i·14-s − 10.8·16-s + (−1.58 − 1.58i)17-s − 19.5i·19-s + (−33.4 − 17.5i)20-s + (7.97 + 7.97i)22-s + (−14.0 + 14.0i)23-s + ⋯ |
L(s) = 1 | + (1.20 + 1.20i)2-s + 1.88i·4-s + (−0.465 + 0.885i)5-s + (0.469 + 0.469i)7-s + (−1.06 + 1.06i)8-s + (−1.62 + 0.504i)10-s + 0.301·11-s + (−0.736 + 0.736i)13-s + 1.12i·14-s − 0.678·16-s + (−0.0934 − 0.0934i)17-s − 1.02i·19-s + (−1.67 − 0.878i)20-s + (0.362 + 0.362i)22-s + (−0.609 + 0.609i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0695i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.997 + 0.0695i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.867166904\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.867166904\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (2.32 - 4.42i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (-2.40 - 2.40i)T + 4iT^{2} \) |
| 7 | \( 1 + (-3.28 - 3.28i)T + 49iT^{2} \) |
| 13 | \( 1 + (9.57 - 9.57i)T - 169iT^{2} \) |
| 17 | \( 1 + (1.58 + 1.58i)T + 289iT^{2} \) |
| 19 | \( 1 + 19.5iT - 361T^{2} \) |
| 23 | \( 1 + (14.0 - 14.0i)T - 529iT^{2} \) |
| 29 | \( 1 - 30.9iT - 841T^{2} \) |
| 31 | \( 1 - 37.4T + 961T^{2} \) |
| 37 | \( 1 + (36.6 + 36.6i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 6.31T + 1.68e3T^{2} \) |
| 43 | \( 1 + (1.92 - 1.92i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-40.9 - 40.9i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-22.1 + 22.1i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 71.4iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 83.5T + 3.72e3T^{2} \) |
| 67 | \( 1 + (12.3 + 12.3i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 46.1T + 5.04e3T^{2} \) |
| 73 | \( 1 + (43.0 - 43.0i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 95.5iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-91.7 + 91.7i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 133. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-39.9 - 39.9i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.65214164445165977435273220919, −10.45051642622344916377427640650, −9.122553393467198240818205724600, −8.100147247934507554438269476451, −7.15014626535961117578398049989, −6.71291274242504804287956621267, −5.57435945675130841411501005488, −4.65622489313107526389344000594, −3.71966061729062991331000272061, −2.48525764394324933907127862045,
0.790684088281053075966258551683, 2.07538766917955964518439869591, 3.50554135058843775352940943925, 4.37844244475228622490294585772, 5.06047646995314979174969204981, 6.10862420331109632560291356787, 7.67259787238867582505846776684, 8.488099551048115733455845168508, 9.920390176324464027684775090200, 10.38821850883376427186544108149