L(s) = 1 | + (1.40 + 1.40i)2-s − 0.0494i·4-s + (−4.99 − 0.112i)5-s + (1.33 + 1.33i)7-s + (5.69 − 5.69i)8-s + (−6.86 − 7.18i)10-s − 3.31·11-s + (2.52 − 2.52i)13-s + 3.74i·14-s + 15.7·16-s + (−19.6 − 19.6i)17-s − 24.1i·19-s + (−0.00554 + 0.247i)20-s + (−4.66 − 4.66i)22-s + (−1.52 + 1.52i)23-s + ⋯ |
L(s) = 1 | + (0.702 + 0.702i)2-s − 0.0123i·4-s + (−0.999 − 0.0224i)5-s + (0.190 + 0.190i)7-s + (0.711 − 0.711i)8-s + (−0.686 − 0.718i)10-s − 0.301·11-s + (0.194 − 0.194i)13-s + 0.267i·14-s + 0.987·16-s + (−1.15 − 1.15i)17-s − 1.26i·19-s + (−0.000277 + 0.0123i)20-s + (−0.211 − 0.211i)22-s + (−0.0662 + 0.0662i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.506 + 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.677165996\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.677165996\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (4.99 + 0.112i)T \) |
| 11 | \( 1 + 3.31T \) |
good | 2 | \( 1 + (-1.40 - 1.40i)T + 4iT^{2} \) |
| 7 | \( 1 + (-1.33 - 1.33i)T + 49iT^{2} \) |
| 13 | \( 1 + (-2.52 + 2.52i)T - 169iT^{2} \) |
| 17 | \( 1 + (19.6 + 19.6i)T + 289iT^{2} \) |
| 19 | \( 1 + 24.1iT - 361T^{2} \) |
| 23 | \( 1 + (1.52 - 1.52i)T - 529iT^{2} \) |
| 29 | \( 1 + 52.1iT - 841T^{2} \) |
| 31 | \( 1 + 5.66T + 961T^{2} \) |
| 37 | \( 1 + (-26.1 - 26.1i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 0.868T + 1.68e3T^{2} \) |
| 43 | \( 1 + (-55.2 + 55.2i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (-7.21 - 7.21i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (34.7 - 34.7i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 78.6iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 71.8T + 3.72e3T^{2} \) |
| 67 | \( 1 + (7.85 + 7.85i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + 75.2T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-11.5 + 11.5i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 132. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (37.5 - 37.5i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 97.5iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (58.4 + 58.4i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84344757138322883246772717047, −9.621099988315895047548644023795, −8.636131807441902242894185184046, −7.55612572042915060003775381827, −6.95094134608315819359009192351, −5.87022199752686274511483821700, −4.77439438360729986605050996841, −4.19450240499650472260730810115, −2.66952789542247841364002289408, −0.54181459686011291665947039003,
1.69303840279758658952891134367, 3.14712890491844116902799990531, 4.03448637644994328038041581170, 4.73456525489251704069294898352, 6.11859612610520067013988821330, 7.43720565976253642098100719975, 8.099076131758883793416573166685, 8.978658985227595510718835410337, 10.59069996566599835668655109461, 10.92883622176517081421151947552