L(s) = 1 | + (0.364 + 0.364i)2-s − 3.73i·4-s + (0.0133 − 4.99i)5-s + (−2.00 − 2.00i)7-s + (2.82 − 2.82i)8-s + (1.82 − 1.81i)10-s − 3.31·11-s + (3.51 − 3.51i)13-s − 1.45i·14-s − 12.8·16-s + (8.30 + 8.30i)17-s − 19.7i·19-s + (−18.6 − 0.0498i)20-s + (−1.20 − 1.20i)22-s + (−2.95 + 2.95i)23-s + ⋯ |
L(s) = 1 | + (0.182 + 0.182i)2-s − 0.933i·4-s + (0.00266 − 0.999i)5-s + (−0.285 − 0.285i)7-s + (0.352 − 0.352i)8-s + (0.182 − 0.181i)10-s − 0.301·11-s + (0.270 − 0.270i)13-s − 0.104i·14-s − 0.804·16-s + (0.488 + 0.488i)17-s − 1.04i·19-s + (−0.933 − 0.00249i)20-s + (−0.0549 − 0.0549i)22-s + (−0.128 + 0.128i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.852 + 0.523i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.852 + 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.312892863\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.312892863\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.0133 + 4.99i)T \) |
| 11 | \( 1 + 3.31T \) |
good | 2 | \( 1 + (-0.364 - 0.364i)T + 4iT^{2} \) |
| 7 | \( 1 + (2.00 + 2.00i)T + 49iT^{2} \) |
| 13 | \( 1 + (-3.51 + 3.51i)T - 169iT^{2} \) |
| 17 | \( 1 + (-8.30 - 8.30i)T + 289iT^{2} \) |
| 19 | \( 1 + 19.7iT - 361T^{2} \) |
| 23 | \( 1 + (2.95 - 2.95i)T - 529iT^{2} \) |
| 29 | \( 1 - 33.7iT - 841T^{2} \) |
| 31 | \( 1 + 35.5T + 961T^{2} \) |
| 37 | \( 1 + (20.7 + 20.7i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 - 10.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + (25.7 - 25.7i)T - 1.84e3iT^{2} \) |
| 47 | \( 1 + (8.30 + 8.30i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 + (-29.2 + 29.2i)T - 2.80e3iT^{2} \) |
| 59 | \( 1 - 17.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 2.32T + 3.72e3T^{2} \) |
| 67 | \( 1 + (55.1 + 55.1i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 82.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-57.3 + 57.3i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 87.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (-109. + 109. i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 127. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-49.8 - 49.8i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37436268237969395081382811041, −9.443471656528386861464051885425, −8.745491747149143782355496909242, −7.58422142675195426636378433157, −6.54208371701108066718129592466, −5.49036904346792099704487606433, −4.87898113273115086415034005551, −3.62372451791834362587167650391, −1.76548582152868190488008943814, −0.48378504214937408697296531142,
2.19129022460752196090065474860, 3.21942631846687661852867090128, 4.04858133385526577196260655807, 5.53702875106197199807226379573, 6.60602346998168103720175101554, 7.51834934555956036709229398979, 8.236900815652869932339379670928, 9.397866286442221061288578044832, 10.31203022636933481330343699173, 11.22580843946972295459919388565