L(s) = 1 | + (−0.364 + 0.364i)2-s + 3.73i·4-s + (−0.0133 − 4.99i)5-s + (−2.00 + 2.00i)7-s + (−2.82 − 2.82i)8-s + (1.82 + 1.81i)10-s + 3.31·11-s + (3.51 + 3.51i)13-s − 1.45i·14-s − 12.8·16-s + (−8.30 + 8.30i)17-s + 19.7i·19-s + (18.6 − 0.0498i)20-s + (−1.20 + 1.20i)22-s + (2.95 + 2.95i)23-s + ⋯ |
L(s) = 1 | + (−0.182 + 0.182i)2-s + 0.933i·4-s + (−0.00266 − 0.999i)5-s + (−0.285 + 0.285i)7-s + (−0.352 − 0.352i)8-s + (0.182 + 0.181i)10-s + 0.301·11-s + (0.270 + 0.270i)13-s − 0.104i·14-s − 0.804·16-s + (−0.488 + 0.488i)17-s + 1.04i·19-s + (0.933 − 0.00249i)20-s + (−0.0549 + 0.0549i)22-s + (0.128 + 0.128i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.852 - 0.523i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.852 - 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.7503859961\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7503859961\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.0133 + 4.99i)T \) |
| 11 | \( 1 - 3.31T \) |
good | 2 | \( 1 + (0.364 - 0.364i)T - 4iT^{2} \) |
| 7 | \( 1 + (2.00 - 2.00i)T - 49iT^{2} \) |
| 13 | \( 1 + (-3.51 - 3.51i)T + 169iT^{2} \) |
| 17 | \( 1 + (8.30 - 8.30i)T - 289iT^{2} \) |
| 19 | \( 1 - 19.7iT - 361T^{2} \) |
| 23 | \( 1 + (-2.95 - 2.95i)T + 529iT^{2} \) |
| 29 | \( 1 - 33.7iT - 841T^{2} \) |
| 31 | \( 1 + 35.5T + 961T^{2} \) |
| 37 | \( 1 + (20.7 - 20.7i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + 10.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + (25.7 + 25.7i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (-8.30 + 8.30i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (29.2 + 29.2i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 17.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 2.32T + 3.72e3T^{2} \) |
| 67 | \( 1 + (55.1 - 55.1i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + 82.4T + 5.04e3T^{2} \) |
| 73 | \( 1 + (-57.3 - 57.3i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 87.8iT - 6.24e3T^{2} \) |
| 83 | \( 1 + (109. + 109. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 - 127. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + (-49.8 + 49.8i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.28445999576800955220395366914, −10.02870958447395466598086827290, −8.935380623170534083267797845050, −8.644325901921206904010557315956, −7.60927842430370769829205444397, −6.59993088804632363400904530645, −5.50601894436173548953341030664, −4.26917284338830834404628904574, −3.37800309698389135583629240752, −1.69581321254829412225300453512,
0.30941862008468422564632026330, 2.04048135987202070510893779391, 3.23753336389687487911550991314, 4.61353246343015185926827103174, 5.85326140462776334165215057507, 6.63983695919333062750232833268, 7.43615385237699065723322638856, 8.846511723288488069985786670313, 9.623321621250246415078016405159, 10.43211675309938307871088088329