Properties

Label 2-495-55.54-c2-0-51
Degree $2$
Conductor $495$
Sign $1$
Analytic cond. $13.4877$
Root an. cond. $3.67257$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.92·2-s + 11.4·4-s + 5·5-s − 6.21·7-s + 29.1·8-s + 19.6·10-s + 11·11-s − 25.1·13-s − 24.4·14-s + 68.6·16-s − 12.7·17-s + 57.0·20-s + 43.1·22-s + 25·25-s − 98.9·26-s − 70.9·28-s − 59.3·31-s + 153.·32-s − 50.0·34-s − 31.0·35-s + 145.·40-s + 50.7·43-s + 125.·44-s − 10.3·49-s + 98.1·50-s − 287.·52-s + 55·55-s + ⋯
L(s)  = 1  + 1.96·2-s + 2.85·4-s + 5-s − 0.888·7-s + 3.63·8-s + 1.96·10-s + 11-s − 1.93·13-s − 1.74·14-s + 4.29·16-s − 0.750·17-s + 2.85·20-s + 1.96·22-s + 25-s − 3.80·26-s − 2.53·28-s − 1.91·31-s + 4.78·32-s − 1.47·34-s − 0.888·35-s + 3.63·40-s + 1.17·43-s + 2.85·44-s − 0.210·49-s + 1.96·50-s − 5.53·52-s + 55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(13.4877\)
Root analytic conductor: \(3.67257\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{495} (109, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(6.350570843\)
\(L(\frac12)\) \(\approx\) \(6.350570843\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 3.92T + 4T^{2} \)
7 \( 1 + 6.21T + 49T^{2} \)
13 \( 1 + 25.1T + 169T^{2} \)
17 \( 1 + 12.7T + 289T^{2} \)
19 \( 1 - 361T^{2} \)
23 \( 1 - 529T^{2} \)
29 \( 1 - 841T^{2} \)
31 \( 1 + 59.3T + 961T^{2} \)
37 \( 1 - 1.36e3T^{2} \)
41 \( 1 - 1.68e3T^{2} \)
43 \( 1 - 50.7T + 1.84e3T^{2} \)
47 \( 1 - 2.20e3T^{2} \)
53 \( 1 - 2.80e3T^{2} \)
59 \( 1 - 59.3T + 3.48e3T^{2} \)
61 \( 1 - 3.72e3T^{2} \)
67 \( 1 - 4.48e3T^{2} \)
71 \( 1 + 118.T + 5.04e3T^{2} \)
73 \( 1 - 106.T + 5.32e3T^{2} \)
79 \( 1 - 6.24e3T^{2} \)
83 \( 1 + 107.T + 6.88e3T^{2} \)
89 \( 1 + 2T + 7.92e3T^{2} \)
97 \( 1 - 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.01859343838703469665940494053, −10.04918453089683149988692387192, −9.245816669305991156577307314818, −7.30019001640015893889543147935, −6.75358859304561070296495859205, −5.89193672390002890042401898799, −5.05551422380309320885100743536, −4.04103262350565372208806958951, −2.85046352767800731014950110064, −1.95913434305194413692663860787, 1.95913434305194413692663860787, 2.85046352767800731014950110064, 4.04103262350565372208806958951, 5.05551422380309320885100743536, 5.89193672390002890042401898799, 6.75358859304561070296495859205, 7.30019001640015893889543147935, 9.245816669305991156577307314818, 10.04918453089683149988692387192, 11.01859343838703469665940494053

Graph of the $Z$-function along the critical line