L(s) = 1 | + 3.68·2-s + 9.58·4-s + (−0.638 − 4.95i)5-s − 5.17i·7-s + 20.5·8-s + (−2.35 − 18.2i)10-s − 3.31i·11-s + 5.25i·13-s − 19.0i·14-s + 37.4·16-s − 20.0·17-s + 25.6·19-s + (−6.11 − 47.5i)20-s − 12.2i·22-s + 18.3·23-s + ⋯ |
L(s) = 1 | + 1.84·2-s + 2.39·4-s + (−0.127 − 0.991i)5-s − 0.738i·7-s + 2.57·8-s + (−0.235 − 1.82i)10-s − 0.301i·11-s + 0.404i·13-s − 1.36i·14-s + 2.34·16-s − 1.17·17-s + 1.35·19-s + (−0.305 − 2.37i)20-s − 0.555i·22-s + 0.795·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.676 + 0.736i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.676 + 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(5.240510751\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.240510751\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (0.638 + 4.95i)T \) |
| 11 | \( 1 + 3.31iT \) |
good | 2 | \( 1 - 3.68T + 4T^{2} \) |
| 7 | \( 1 + 5.17iT - 49T^{2} \) |
| 13 | \( 1 - 5.25iT - 169T^{2} \) |
| 17 | \( 1 + 20.0T + 289T^{2} \) |
| 19 | \( 1 - 25.6T + 361T^{2} \) |
| 23 | \( 1 - 18.3T + 529T^{2} \) |
| 29 | \( 1 - 15.0iT - 841T^{2} \) |
| 31 | \( 1 - 3.38T + 961T^{2} \) |
| 37 | \( 1 - 16.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 52.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 - 25.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 70.8T + 2.20e3T^{2} \) |
| 53 | \( 1 + 94.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + 82.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 60.9T + 3.72e3T^{2} \) |
| 67 | \( 1 - 127. iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 56.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 32.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 101.T + 6.24e3T^{2} \) |
| 83 | \( 1 + 135.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 147. iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 71.8iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.29057021609776460043780964984, −9.933147146388555292640938315021, −8.737077592549312091813336992328, −7.49704234986916495915381493367, −6.71097177642158910332686195559, −5.60985871351497248648521261895, −4.74478808253232031804805834831, −4.08313097784917150394696822494, −2.93353887739965631820716400569, −1.32761029933472190928353226926,
2.22774042327853146843034293650, 3.01564545243259950705934095279, 4.05247117472088328353022364193, 5.20356350025401544864827019869, 5.97466202357392743352569307561, 6.91111371034889526099984922386, 7.59520060163154455559391864703, 9.140035935920651216943032831457, 10.46306231716328436055474558271, 11.16668693395019659126607585365