L(s) = 1 | + 3.50·2-s + 8.27·4-s + (4.54 + 2.09i)5-s − 0.502i·7-s + 14.9·8-s + (15.9 + 7.33i)10-s + 3.31i·11-s − 8.22i·13-s − 1.75i·14-s + 19.3·16-s + 10.4·17-s − 3.26·19-s + (37.5 + 17.3i)20-s + 11.6i·22-s − 14.7·23-s + ⋯ |
L(s) = 1 | + 1.75·2-s + 2.06·4-s + (0.908 + 0.418i)5-s − 0.0717i·7-s + 1.87·8-s + (1.59 + 0.733i)10-s + 0.301i·11-s − 0.632i·13-s − 0.125i·14-s + 1.20·16-s + 0.612·17-s − 0.171·19-s + (1.87 + 0.866i)20-s + 0.528i·22-s − 0.641·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 - 0.182i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.983 - 0.182i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(5.568818246\) |
\(L(\frac12)\) |
\(\approx\) |
\(5.568818246\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-4.54 - 2.09i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 2 | \( 1 - 3.50T + 4T^{2} \) |
| 7 | \( 1 + 0.502iT - 49T^{2} \) |
| 13 | \( 1 + 8.22iT - 169T^{2} \) |
| 17 | \( 1 - 10.4T + 289T^{2} \) |
| 19 | \( 1 + 3.26T + 361T^{2} \) |
| 23 | \( 1 + 14.7T + 529T^{2} \) |
| 29 | \( 1 - 24.2iT - 841T^{2} \) |
| 31 | \( 1 + 26.7T + 961T^{2} \) |
| 37 | \( 1 + 29.1iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 27.6iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 27.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 21.3T + 2.20e3T^{2} \) |
| 53 | \( 1 - 21.4T + 2.80e3T^{2} \) |
| 59 | \( 1 + 53.5iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 120.T + 3.72e3T^{2} \) |
| 67 | \( 1 - 108. iT - 4.48e3T^{2} \) |
| 71 | \( 1 + 115. iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 129. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 80.7T + 6.24e3T^{2} \) |
| 83 | \( 1 - 112.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 67.6iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 78.3iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.84178873479723225946972373431, −10.29666208052276741422662560699, −9.101109866496382697453666827404, −7.57601329050622167677130273692, −6.75443654397605171184417155053, −5.76326170131842908773418040451, −5.25191139370165364823744364678, −3.96012521540878813894476241379, −2.96784999333333371985901083718, −1.87503983403284436397654151917,
1.70393787642744747617966979175, 2.85695672208443470836410851633, 4.09008643134451915205353585074, 4.99664864702423599925700762210, 5.90462677468083262867493666112, 6.46646681021483081666538500702, 7.71356028692906838358235238337, 9.006098119639650260103027128026, 10.00738492232916502513457946932, 11.01462590306582166031272767034