L(s) = 1 | − 3.68·2-s + 9.58·4-s + (0.638 − 4.95i)5-s + 5.17i·7-s − 20.5·8-s + (−2.35 + 18.2i)10-s − 3.31i·11-s − 5.25i·13-s − 19.0i·14-s + 37.4·16-s + 20.0·17-s + 25.6·19-s + (6.11 − 47.5i)20-s + 12.2i·22-s − 18.3·23-s + ⋯ |
L(s) = 1 | − 1.84·2-s + 2.39·4-s + (0.127 − 0.991i)5-s + 0.738i·7-s − 2.57·8-s + (−0.235 + 1.82i)10-s − 0.301i·11-s − 0.404i·13-s − 1.36i·14-s + 2.34·16-s + 1.17·17-s + 1.35·19-s + (0.305 − 2.37i)20-s + 0.555i·22-s − 0.795·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.468 + 0.883i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.468 + 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.7170503122\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7170503122\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.638 + 4.95i)T \) |
| 11 | \( 1 + 3.31iT \) |
good | 2 | \( 1 + 3.68T + 4T^{2} \) |
| 7 | \( 1 - 5.17iT - 49T^{2} \) |
| 13 | \( 1 + 5.25iT - 169T^{2} \) |
| 17 | \( 1 - 20.0T + 289T^{2} \) |
| 19 | \( 1 - 25.6T + 361T^{2} \) |
| 23 | \( 1 + 18.3T + 529T^{2} \) |
| 29 | \( 1 - 15.0iT - 841T^{2} \) |
| 31 | \( 1 - 3.38T + 961T^{2} \) |
| 37 | \( 1 + 16.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 - 52.0iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 25.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + 70.8T + 2.20e3T^{2} \) |
| 53 | \( 1 - 94.2T + 2.80e3T^{2} \) |
| 59 | \( 1 + 82.3iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 60.9T + 3.72e3T^{2} \) |
| 67 | \( 1 + 127. iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 56.7iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 32.0iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 101.T + 6.24e3T^{2} \) |
| 83 | \( 1 - 135.T + 6.88e3T^{2} \) |
| 89 | \( 1 + 147. iT - 7.92e3T^{2} \) |
| 97 | \( 1 + 71.8iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09348094927051831386597830548, −9.676124308695123634775723306804, −8.776127132474717583696412768847, −8.160553542388934333148475811082, −7.41388433463759218719968698918, −6.06177002282290182812858623814, −5.26923648873907789351809636656, −3.21322439177042760887816129155, −1.79309608693796319486542942053, −0.65347418933097383787926352814,
1.07222761490506844731982707041, 2.42174662421984983722854986887, 3.66537702267879841408835505883, 5.72426863063264382328509901807, 6.84048244344238281290328449457, 7.40922770740945019210785042883, 8.092695390572515935607523926167, 9.323703077258640829814716282857, 10.12066559636919313783588918225, 10.35824366319909976363504079323