L(s) = 1 | − 2.09·2-s + 0.373·4-s + (−3.17 + 3.86i)5-s − 2.11i·7-s + 7.58·8-s + (6.63 − 8.08i)10-s + 3.31i·11-s − 17.4i·13-s + 4.42i·14-s − 17.3·16-s − 17.3·17-s − 16.6·19-s + (−1.18 + 1.44i)20-s − 6.93i·22-s + 17.6·23-s + ⋯ |
L(s) = 1 | − 1.04·2-s + 0.0934·4-s + (−0.634 + 0.772i)5-s − 0.302i·7-s + 0.947·8-s + (0.663 − 0.808i)10-s + 0.301i·11-s − 1.34i·13-s + 0.316i·14-s − 1.08·16-s − 1.02·17-s − 0.878·19-s + (−0.0593 + 0.0722i)20-s − 0.315i·22-s + 0.766·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.264i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.964 - 0.264i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.6593546642\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6593546642\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (3.17 - 3.86i)T \) |
| 11 | \( 1 - 3.31iT \) |
good | 2 | \( 1 + 2.09T + 4T^{2} \) |
| 7 | \( 1 + 2.11iT - 49T^{2} \) |
| 13 | \( 1 + 17.4iT - 169T^{2} \) |
| 17 | \( 1 + 17.3T + 289T^{2} \) |
| 19 | \( 1 + 16.6T + 361T^{2} \) |
| 23 | \( 1 - 17.6T + 529T^{2} \) |
| 29 | \( 1 - 38.5iT - 841T^{2} \) |
| 31 | \( 1 - 49.2T + 961T^{2} \) |
| 37 | \( 1 - 12.4iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 1.84iT - 1.68e3T^{2} \) |
| 43 | \( 1 + 19.5iT - 1.84e3T^{2} \) |
| 47 | \( 1 - 59.7T + 2.20e3T^{2} \) |
| 53 | \( 1 + 5.90T + 2.80e3T^{2} \) |
| 59 | \( 1 + 80.0iT - 3.48e3T^{2} \) |
| 61 | \( 1 - 52.2T + 3.72e3T^{2} \) |
| 67 | \( 1 - 74.7iT - 4.48e3T^{2} \) |
| 71 | \( 1 - 75.9iT - 5.04e3T^{2} \) |
| 73 | \( 1 - 9.20iT - 5.32e3T^{2} \) |
| 79 | \( 1 - 123.T + 6.24e3T^{2} \) |
| 83 | \( 1 - 65.5T + 6.88e3T^{2} \) |
| 89 | \( 1 - 94.2iT - 7.92e3T^{2} \) |
| 97 | \( 1 - 92.6iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60367619426331844384866576871, −10.05993074092352940243734942832, −8.834148426277455740294958078471, −8.198026405980120398433351822795, −7.30809496576369125556789707986, −6.58857787486670922420193869647, −4.98292573557621814504657723135, −3.90626338632029340802782170201, −2.53323959611944311841795684803, −0.70434525409978444754773609098,
0.67128750089336567366670673754, 2.14591000834199793546957527412, 4.14646632994943619581252202730, 4.71828680350169557783292224085, 6.28086997019672117212004456307, 7.33713782537167280067785065938, 8.327453626761267769424873352763, 8.890567093100739553690466807409, 9.463131166506933199220684226394, 10.64094364331327070405118567389