Properties

Label 2-495-11.10-c2-0-38
Degree $2$
Conductor $495$
Sign $-0.422 - 0.906i$
Analytic cond. $13.4877$
Root an. cond. $3.67257$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.59i·2-s − 2.71·4-s − 2.23·5-s − 0.880i·7-s − 3.31i·8-s + 5.79i·10-s + (−4.64 − 9.97i)11-s + 8.45i·13-s − 2.28·14-s − 19.4·16-s + 1.22i·17-s − 17.1i·19-s + 6.08·20-s + (−25.8 + 12.0i)22-s − 20.2·23-s + ⋯
L(s)  = 1  − 1.29i·2-s − 0.679·4-s − 0.447·5-s − 0.125i·7-s − 0.414i·8-s + 0.579i·10-s + (−0.422 − 0.906i)11-s + 0.650i·13-s − 0.162·14-s − 1.21·16-s + 0.0718i·17-s − 0.903i·19-s + 0.304·20-s + (−1.17 + 0.547i)22-s − 0.880·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.422 - 0.906i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 495 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.422 - 0.906i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(495\)    =    \(3^{2} \cdot 5 \cdot 11\)
Sign: $-0.422 - 0.906i$
Analytic conductor: \(13.4877\)
Root analytic conductor: \(3.67257\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{495} (406, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 495,\ (\ :1),\ -0.422 - 0.906i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5889039388\)
\(L(\frac12)\) \(\approx\) \(0.5889039388\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 2.23T \)
11 \( 1 + (4.64 + 9.97i)T \)
good2 \( 1 + 2.59iT - 4T^{2} \)
7 \( 1 + 0.880iT - 49T^{2} \)
13 \( 1 - 8.45iT - 169T^{2} \)
17 \( 1 - 1.22iT - 289T^{2} \)
19 \( 1 + 17.1iT - 361T^{2} \)
23 \( 1 + 20.2T + 529T^{2} \)
29 \( 1 - 35.3iT - 841T^{2} \)
31 \( 1 + 49.4T + 961T^{2} \)
37 \( 1 + 16.6T + 1.36e3T^{2} \)
41 \( 1 - 29.7iT - 1.68e3T^{2} \)
43 \( 1 + 26.9iT - 1.84e3T^{2} \)
47 \( 1 + 67.3T + 2.20e3T^{2} \)
53 \( 1 + 52.7T + 2.80e3T^{2} \)
59 \( 1 - 26.1T + 3.48e3T^{2} \)
61 \( 1 - 30.0iT - 3.72e3T^{2} \)
67 \( 1 - 26.7T + 4.48e3T^{2} \)
71 \( 1 - 35.6T + 5.04e3T^{2} \)
73 \( 1 + 134. iT - 5.32e3T^{2} \)
79 \( 1 + 20.6iT - 6.24e3T^{2} \)
83 \( 1 + 50.3iT - 6.88e3T^{2} \)
89 \( 1 - 165.T + 7.92e3T^{2} \)
97 \( 1 + 16.1T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.47436380321073816821249597073, −9.380951835632529550227101945035, −8.645491821821129074356590076166, −7.44285630616948661962450034058, −6.46279414208076615522148082622, −5.05622573738942578001853235326, −3.88453930490904530267967458047, −3.05873650184240482649744427192, −1.75036003389716651499582148387, −0.22323468683412905177045034947, 2.18248711323201794836469870965, 3.84267485695296079052702272068, 5.04264014178584163910878851306, 5.84058620999837948713335941822, 6.86069869631844189462406464765, 7.77848412516711779217157633581, 8.160599616755682592245388719964, 9.383950769456894444617241394917, 10.32437327798381587914638094495, 11.35986108451992197687197071385

Graph of the $Z$-function along the critical line