Properties

Label 2-4925-1.1-c1-0-252
Degree $2$
Conductor $4925$
Sign $-1$
Analytic cond. $39.3263$
Root an. cond. $6.27107$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.285·2-s + 1.26·3-s − 1.91·4-s + 0.362·6-s + 2.73·7-s − 1.11·8-s − 1.39·9-s + 3.99·11-s − 2.43·12-s − 6.64·13-s + 0.780·14-s + 3.51·16-s − 1.76·17-s − 0.397·18-s − 4.25·19-s + 3.46·21-s + 1.14·22-s + 7.54·23-s − 1.41·24-s − 1.89·26-s − 5.56·27-s − 5.24·28-s − 0.649·29-s − 9.61·31-s + 3.24·32-s + 5.06·33-s − 0.505·34-s + ⋯
L(s)  = 1  + 0.201·2-s + 0.732·3-s − 0.959·4-s + 0.147·6-s + 1.03·7-s − 0.395·8-s − 0.463·9-s + 1.20·11-s − 0.702·12-s − 1.84·13-s + 0.208·14-s + 0.879·16-s − 0.429·17-s − 0.0936·18-s − 0.975·19-s + 0.756·21-s + 0.243·22-s + 1.57·23-s − 0.289·24-s − 0.372·26-s − 1.07·27-s − 0.991·28-s − 0.120·29-s − 1.72·31-s + 0.573·32-s + 0.882·33-s − 0.0866·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4925 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4925\)    =    \(5^{2} \cdot 197\)
Sign: $-1$
Analytic conductor: \(39.3263\)
Root analytic conductor: \(6.27107\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4925,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 \)
197 \( 1 + T \)
good2 \( 1 - 0.285T + 2T^{2} \)
3 \( 1 - 1.26T + 3T^{2} \)
7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 - 3.99T + 11T^{2} \)
13 \( 1 + 6.64T + 13T^{2} \)
17 \( 1 + 1.76T + 17T^{2} \)
19 \( 1 + 4.25T + 19T^{2} \)
23 \( 1 - 7.54T + 23T^{2} \)
29 \( 1 + 0.649T + 29T^{2} \)
31 \( 1 + 9.61T + 31T^{2} \)
37 \( 1 - 9.93T + 37T^{2} \)
41 \( 1 - 5.28T + 41T^{2} \)
43 \( 1 - 7.01T + 43T^{2} \)
47 \( 1 + 5.51T + 47T^{2} \)
53 \( 1 + 8.56T + 53T^{2} \)
59 \( 1 + 14.6T + 59T^{2} \)
61 \( 1 + 11.4T + 61T^{2} \)
67 \( 1 + 7.62T + 67T^{2} \)
71 \( 1 + 2.65T + 71T^{2} \)
73 \( 1 + 5.54T + 73T^{2} \)
79 \( 1 - 7.00T + 79T^{2} \)
83 \( 1 - 0.0317T + 83T^{2} \)
89 \( 1 - 1.24T + 89T^{2} \)
97 \( 1 - 18.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81533777089248382322540436225, −7.54505124349765572732250431984, −6.40857889434702740927868746660, −5.55074864522796048337123912836, −4.61845329821299021714600092581, −4.43156549682650425737774846430, −3.31882598783517194310065552290, −2.49895181303491012379432088317, −1.48629164949941588777256189126, 0, 1.48629164949941588777256189126, 2.49895181303491012379432088317, 3.31882598783517194310065552290, 4.43156549682650425737774846430, 4.61845329821299021714600092581, 5.55074864522796048337123912836, 6.40857889434702740927868746660, 7.54505124349765572732250431984, 7.81533777089248382322540436225

Graph of the $Z$-function along the critical line