Properties

Label 4-7e4-1.1-c11e2-0-3
Degree $4$
Conductor $2401$
Sign $1$
Analytic cond. $1417.43$
Root an. cond. $6.13586$
Motivic weight $11$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $2$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 54·2-s − 120·3-s + 1.46e3·4-s + 1.35e4·5-s + 6.48e3·6-s − 1.10e5·8-s − 2.22e5·9-s − 7.29e5·10-s − 7.50e5·11-s − 1.75e5·12-s + 9.54e3·13-s − 1.62e6·15-s + 5.63e6·16-s − 4.16e6·17-s + 1.19e7·18-s + 1.79e7·19-s + 1.97e7·20-s + 4.05e7·22-s − 6.61e7·23-s + 1.32e7·24-s + 3.93e7·25-s − 5.15e5·26-s + 3.38e7·27-s + 6.15e7·29-s + 8.74e7·30-s + 1.52e7·31-s − 7.79e7·32-s + ⋯
L(s)  = 1  − 1.19·2-s − 0.285·3-s + 0.712·4-s + 1.93·5-s + 0.340·6-s − 1.19·8-s − 1.25·9-s − 2.30·10-s − 1.40·11-s − 0.203·12-s + 0.00713·13-s − 0.550·15-s + 1.34·16-s − 0.710·17-s + 1.49·18-s + 1.66·19-s + 1.37·20-s + 1.67·22-s − 2.14·23-s + 0.340·24-s + 0.806·25-s − 0.00851·26-s + 0.453·27-s + 0.556·29-s + 0.657·30-s + 0.0958·31-s − 0.410·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(12-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2401 ^{s/2} \, \Gamma_{\C}(s+11/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(2401\)    =    \(7^{4}\)
Sign: $1$
Analytic conductor: \(1417.43\)
Root analytic conductor: \(6.13586\)
Motivic weight: \(11\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((4,\ 2401,\ (\ :11/2, 11/2),\ 1)\)

Particular Values

\(L(6)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{13}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad7 \( 1 \)
good2$D_{4}$ \( 1 + 27 p T + 91 p^{4} T^{2} + 27 p^{12} T^{3} + p^{22} T^{4} \)
3$D_{4}$ \( 1 + 40 p T + 26290 p^{2} T^{2} + 40 p^{12} T^{3} + p^{22} T^{4} \)
5$D_{4}$ \( 1 - 108 p^{3} T + 5715274 p^{2} T^{2} - 108 p^{14} T^{3} + p^{22} T^{4} \)
11$D_{4}$ \( 1 + 68256 p T + 653251941286 T^{2} + 68256 p^{12} T^{3} + p^{22} T^{4} \)
13$D_{4}$ \( 1 - 9548 T + 580074739914 T^{2} - 9548 p^{11} T^{3} + p^{22} T^{4} \)
17$D_{4}$ \( 1 + 4160052 T + 72837924685942 T^{2} + 4160052 p^{11} T^{3} + p^{22} T^{4} \)
19$D_{4}$ \( 1 - 17998712 T + 293399338219938 T^{2} - 17998712 p^{11} T^{3} + p^{22} T^{4} \)
23$D_{4}$ \( 1 + 66161016 T + 2994683043115918 T^{2} + 66161016 p^{11} T^{3} + p^{22} T^{4} \)
29$D_{4}$ \( 1 - 2121228 p T + 12823193731307518 T^{2} - 2121228 p^{12} T^{3} + p^{22} T^{4} \)
31$D_{4}$ \( 1 - 15281552 T + 44544265736191854 T^{2} - 15281552 p^{11} T^{3} + p^{22} T^{4} \)
37$D_{4}$ \( 1 + 527218340 T + 315935809764623790 T^{2} + 527218340 p^{11} T^{3} + p^{22} T^{4} \)
41$D_{4}$ \( 1 - 178276140 T + 1103495454485680198 T^{2} - 178276140 p^{11} T^{3} + p^{22} T^{4} \)
43$D_{4}$ \( 1 - 1826745232 T + 2408495597390567334 T^{2} - 1826745232 p^{11} T^{3} + p^{22} T^{4} \)
47$D_{4}$ \( 1 + 568240704 T + 125222806434661774 T^{2} + 568240704 p^{11} T^{3} + p^{22} T^{4} \)
53$D_{4}$ \( 1 + 4185816372 T + 8708326678160294206 T^{2} + 4185816372 p^{11} T^{3} + p^{22} T^{4} \)
59$D_{4}$ \( 1 + 3111345000 T + 25961868574953911218 T^{2} + 3111345000 p^{11} T^{3} + p^{22} T^{4} \)
61$D_{4}$ \( 1 + 15042595060 T + \)\(13\!\cdots\!78\)\( T^{2} + 15042595060 p^{11} T^{3} + p^{22} T^{4} \)
67$D_{4}$ \( 1 - 9856523968 T + \)\(12\!\cdots\!18\)\( T^{2} - 9856523968 p^{11} T^{3} + p^{22} T^{4} \)
71$D_{4}$ \( 1 + 24312011328 T + \)\(59\!\cdots\!02\)\( T^{2} + 24312011328 p^{11} T^{3} + p^{22} T^{4} \)
73$D_{4}$ \( 1 - 30890001932 T + \)\(73\!\cdots\!46\)\( T^{2} - 30890001932 p^{11} T^{3} + p^{22} T^{4} \)
79$D_{4}$ \( 1 - 1992804256 T + \)\(85\!\cdots\!38\)\( T^{2} - 1992804256 p^{11} T^{3} + p^{22} T^{4} \)
83$D_{4}$ \( 1 + 5277014568 T + \)\(22\!\cdots\!46\)\( T^{2} + 5277014568 p^{11} T^{3} + p^{22} T^{4} \)
89$D_{4}$ \( 1 - 101541312828 T + \)\(76\!\cdots\!78\)\( T^{2} - 101541312828 p^{11} T^{3} + p^{22} T^{4} \)
97$D_{4}$ \( 1 - 192228621116 T + \)\(23\!\cdots\!14\)\( T^{2} - 192228621116 p^{11} T^{3} + p^{22} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.95776021716272696957431266282, −12.07565486470200023105733234463, −11.79616546142252160558415392976, −10.86603076261353902873417974893, −10.35274861449342546499229175346, −9.902057681664807588427017111538, −9.181392927418900040200293843283, −9.118239769779742969999386994405, −7.976282909673634197872119276196, −7.80301022621852801861021199699, −6.43269232891223512667039671578, −5.95677381188123483946378908192, −5.66436002545152060946769471324, −4.93394815933968296097972652090, −3.33487864033064992997976933759, −2.53294342489107854684642164936, −2.16720861015607171635815597964, −1.21140542763281010288777580288, 0, 0, 1.21140542763281010288777580288, 2.16720861015607171635815597964, 2.53294342489107854684642164936, 3.33487864033064992997976933759, 4.93394815933968296097972652090, 5.66436002545152060946769471324, 5.95677381188123483946378908192, 6.43269232891223512667039671578, 7.80301022621852801861021199699, 7.976282909673634197872119276196, 9.118239769779742969999386994405, 9.181392927418900040200293843283, 9.902057681664807588427017111538, 10.35274861449342546499229175346, 10.86603076261353902873417974893, 11.79616546142252160558415392976, 12.07565486470200023105733234463, 12.95776021716272696957431266282

Graph of the $Z$-function along the critical line