L(s) = 1 | + (2.5 − 4.33i)2-s + (243.5 + 421. i)4-s + 4.99e3·8-s + (9.84e3 − 1.70e4i)9-s + (2.14e4 + 3.71e4i)11-s + (−1.12e5 + 1.94e5i)16-s + (−4.92e4 − 8.52e4i)18-s + 2.14e5·22-s + (−6.98e5 + 1.20e6i)23-s + (9.76e5 + 1.69e6i)25-s + 7.57e6·29-s + (1.83e6 + 3.18e6i)32-s + 9.58e6·36-s + (−1.13e7 + 1.96e7i)37-s + 3.71e7·43-s + (−1.04e7 + 1.80e7i)44-s + ⋯ |
L(s) = 1 | + (0.110 − 0.191i)2-s + (0.475 + 0.823i)4-s + 0.431·8-s + (0.499 − 0.866i)9-s + (0.441 + 0.765i)11-s + (−0.427 + 0.741i)16-s + (−0.110 − 0.191i)18-s + 0.195·22-s + (−0.520 + 0.900i)23-s + (0.5 + 0.866i)25-s + 1.98·29-s + (0.310 + 0.537i)32-s + 0.951·36-s + (−0.997 + 1.72i)37-s + 1.65·43-s + (−0.420 + 0.727i)44-s + ⋯ |
Λ(s)=(=(49s/2ΓC(s)L(s)(0.605−0.795i)Λ(10−s)
Λ(s)=(=(49s/2ΓC(s+9/2)L(s)(0.605−0.795i)Λ(1−s)
Degree: |
2 |
Conductor: |
49
= 72
|
Sign: |
0.605−0.795i
|
Analytic conductor: |
25.2367 |
Root analytic conductor: |
5.02361 |
Motivic weight: |
9 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ49(30,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 49, ( :9/2), 0.605−0.795i)
|
Particular Values
L(5) |
≈ |
2.17601+1.07871i |
L(21) |
≈ |
2.17601+1.07871i |
L(211) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
good | 2 | 1+(−2.5+4.33i)T+(−256−443.i)T2 |
| 3 | 1+(−9.84e3+1.70e4i)T2 |
| 5 | 1+(−9.76e5−1.69e6i)T2 |
| 11 | 1+(−2.14e4−3.71e4i)T+(−1.17e9+2.04e9i)T2 |
| 13 | 1+1.06e10T2 |
| 17 | 1+(−5.92e10+1.02e11i)T2 |
| 19 | 1+(−1.61e11−2.79e11i)T2 |
| 23 | 1+(6.98e5−1.20e6i)T+(−9.00e11−1.55e12i)T2 |
| 29 | 1−7.57e6T+1.45e13T2 |
| 31 | 1+(−1.32e13+2.28e13i)T2 |
| 37 | 1+(1.13e7−1.96e7i)T+(−6.49e13−1.12e14i)T2 |
| 41 | 1+3.27e14T2 |
| 43 | 1−3.71e7T+5.02e14T2 |
| 47 | 1+(−5.59e14−9.69e14i)T2 |
| 53 | 1+(−2.90e7−5.03e7i)T+(−1.64e15+2.85e15i)T2 |
| 59 | 1+(−4.33e15+7.50e15i)T2 |
| 61 | 1+(−5.84e15−1.01e16i)T2 |
| 67 | 1+(1.31e8+2.27e8i)T+(−1.36e16+2.35e16i)T2 |
| 71 | 1+4.13e8T+4.58e16T2 |
| 73 | 1+(−2.94e16+5.09e16i)T2 |
| 79 | 1+(−3.01e8+5.22e8i)T+(−5.99e16−1.03e17i)T2 |
| 83 | 1+1.86e17T2 |
| 89 | 1+(−1.75e17−3.03e17i)T2 |
| 97 | 1+7.60e17T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.63710372481755046855608412281, −12.39650430104034190810895247771, −11.82276801258902823245907127143, −10.32258873166641244426943656185, −8.997213593298654191809275746383, −7.51427255124369556147385542311, −6.49776454154230393379984601939, −4.42011980977517455192126043811, −3.14068781967076920257556481988, −1.44800155633274376186333954699,
0.851354735513381158997470362782, 2.37409109526516569093004363661, 4.49096994358657966389670122647, 5.87637176174347950077153352495, 7.05305963664313701613200405744, 8.548203908787923868595947359097, 10.16786960097409010593433827994, 10.91101440218544736316144532331, 12.29108240145796027081282825788, 13.80794100938654615419601184942