Properties

Label 2-4864-1.1-c1-0-74
Degree $2$
Conductor $4864$
Sign $1$
Analytic cond. $38.8392$
Root an. cond. $6.23211$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.10·3-s + 0.813·5-s − 0.813·7-s + 6.62·9-s − 1.71·11-s + 6.20·13-s + 2.52·15-s − 5.91·17-s − 19-s − 2.52·21-s + 4·23-s − 4.33·25-s + 11.2·27-s + 3.68·29-s + 10.3·31-s − 5.30·33-s − 0.661·35-s − 2.52·37-s + 19.2·39-s + 1.68·41-s + 3.33·43-s + 5.39·45-s − 5.86·47-s − 6.33·49-s − 18.3·51-s + 5.94·53-s − 1.39·55-s + ⋯
L(s)  = 1  + 1.79·3-s + 0.363·5-s − 0.307·7-s + 2.20·9-s − 0.515·11-s + 1.72·13-s + 0.651·15-s − 1.43·17-s − 0.229·19-s − 0.550·21-s + 0.834·23-s − 0.867·25-s + 2.16·27-s + 0.683·29-s + 1.86·31-s − 0.924·33-s − 0.111·35-s − 0.415·37-s + 3.08·39-s + 0.262·41-s + 0.509·43-s + 0.803·45-s − 0.855·47-s − 0.905·49-s − 2.57·51-s + 0.816·53-s − 0.187·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4864 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4864 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4864\)    =    \(2^{8} \cdot 19\)
Sign: $1$
Analytic conductor: \(38.8392\)
Root analytic conductor: \(6.23211\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4864,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.354352089\)
\(L(\frac12)\) \(\approx\) \(4.354352089\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 + T \)
good3 \( 1 - 3.10T + 3T^{2} \)
5 \( 1 - 0.813T + 5T^{2} \)
7 \( 1 + 0.813T + 7T^{2} \)
11 \( 1 + 1.71T + 11T^{2} \)
13 \( 1 - 6.20T + 13T^{2} \)
17 \( 1 + 5.91T + 17T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 - 3.68T + 29T^{2} \)
31 \( 1 - 10.3T + 31T^{2} \)
37 \( 1 + 2.52T + 37T^{2} \)
41 \( 1 - 1.68T + 41T^{2} \)
43 \( 1 - 3.33T + 43T^{2} \)
47 \( 1 + 5.86T + 47T^{2} \)
53 \( 1 - 5.94T + 53T^{2} \)
59 \( 1 - 13.6T + 59T^{2} \)
61 \( 1 - 8.64T + 61T^{2} \)
67 \( 1 - 3.57T + 67T^{2} \)
71 \( 1 - 10.7T + 71T^{2} \)
73 \( 1 - 8.86T + 73T^{2} \)
79 \( 1 + 4.15T + 79T^{2} \)
83 \( 1 + 1.21T + 83T^{2} \)
89 \( 1 - 6.15T + 89T^{2} \)
97 \( 1 + 11.6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.459988631250498286567100752978, −7.86354332437703994414342525521, −6.70735852721148669951675757316, −6.49470290498488940317184982866, −5.23793277569753189864460420820, −4.21545955401536147414142872139, −3.67839275411268903435773525884, −2.75555570049778777513910216076, −2.21145624622053697853736077715, −1.12474751477503475778201019196, 1.12474751477503475778201019196, 2.21145624622053697853736077715, 2.75555570049778777513910216076, 3.67839275411268903435773525884, 4.21545955401536147414142872139, 5.23793277569753189864460420820, 6.49470290498488940317184982866, 6.70735852721148669951675757316, 7.86354332437703994414342525521, 8.459988631250498286567100752978

Graph of the $Z$-function along the critical line