L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.499 − 0.866i)4-s + (1.5 + 2.59i)5-s + (−1 + 1.73i)7-s − 0.999·8-s + 3·10-s + (2 + 3.46i)13-s + (0.999 + 1.73i)14-s + (−0.5 + 0.866i)16-s + 6·17-s − 7·19-s + (1.50 − 2.59i)20-s + (4.5 + 7.79i)23-s + (−2 + 3.46i)25-s + 3.99·26-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.249 − 0.433i)4-s + (0.670 + 1.16i)5-s + (−0.377 + 0.654i)7-s − 0.353·8-s + 0.948·10-s + (0.554 + 0.960i)13-s + (0.267 + 0.462i)14-s + (−0.125 + 0.216i)16-s + 1.45·17-s − 1.60·19-s + (0.335 − 0.580i)20-s + (0.938 + 1.62i)23-s + (−0.400 + 0.692i)25-s + 0.784·26-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 486 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.72919 + 0.304903i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.72919 + 0.304903i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 + 0.866i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 - 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 6T + 17T^{2} \) |
| 19 | \( 1 + 7T + 19T^{2} \) |
| 23 | \( 1 + (-4.5 - 7.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 + 7.79i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1 + 1.73i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (3 + 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2 + 3.46i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.5 + 2.59i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 + 8.66i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.5 + 4.33i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 3T + 71T^{2} \) |
| 73 | \( 1 + 7T + 73T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (3 - 5.19i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 12T + 89T^{2} \) |
| 97 | \( 1 + (-0.5 + 0.866i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.03457261891200222356840903600, −10.20026464587774252493112762676, −9.530771136615603992571230523222, −8.563981486422708538670718926232, −7.12040862029975227921916369845, −6.21896888550664762617002940327, −5.52511068690168711259613773189, −3.96350899921876026263251702378, −2.93010306679192687358797931440, −1.89102821128581011153876899378,
1.05188513745075441533185082570, 3.09445757754292285123753254422, 4.40894079072760182883170848310, 5.28175130366550267513058917458, 6.17423520285278835618122467941, 7.14210723258201388684837341199, 8.438662557282255484760827983418, 8.766045867232726927570207969390, 10.10754235561458609037512342213, 10.64557171912236157911321979084