Properties

Label 6-4851e3-1.1-c1e3-0-4
Degree $6$
Conductor $114154707051$
Sign $-1$
Analytic cond. $58119.9$
Root an. cond. $6.22377$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $3$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8-s − 3·11-s − 12·19-s + 6·23-s − 12·29-s + 6·31-s + 6·41-s + 6·43-s − 24·47-s − 24·59-s − 18·61-s − 7·64-s + 12·67-s − 12·71-s − 24·73-s + 12·79-s − 18·83-s + 3·88-s + 18·89-s − 24·97-s − 12·101-s + 12·107-s − 12·109-s + 6·113-s + 6·121-s − 2·125-s + 127-s + ⋯
L(s)  = 1  − 0.353·8-s − 0.904·11-s − 2.75·19-s + 1.25·23-s − 2.22·29-s + 1.07·31-s + 0.937·41-s + 0.914·43-s − 3.50·47-s − 3.12·59-s − 2.30·61-s − 7/8·64-s + 1.46·67-s − 1.42·71-s − 2.80·73-s + 1.35·79-s − 1.97·83-s + 0.319·88-s + 1.90·89-s − 2.43·97-s − 1.19·101-s + 1.16·107-s − 1.14·109-s + 0.564·113-s + 6/11·121-s − 0.178·125-s + 0.0887·127-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 7^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(2-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(3^{6} \cdot 7^{6} \cdot 11^{3}\right)^{s/2} \, \Gamma_{\C}(s+1/2)^{3} \, L(s)\cr=\mathstrut & -\,\Lambda(1-s)\end{aligned}\]

Invariants

Degree: \(6\)
Conductor: \(3^{6} \cdot 7^{6} \cdot 11^{3}\)
Sign: $-1$
Analytic conductor: \(58119.9\)
Root analytic conductor: \(6.22377\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(3\)
Selberg data: \((6,\ 3^{6} \cdot 7^{6} \cdot 11^{3} ,\ ( \ : 1/2, 1/2, 1/2 ),\ -1 )\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad3 \( 1 \)
7 \( 1 \)
11$C_1$ \( ( 1 + T )^{3} \)
good2$D_{6}$ \( 1 + T^{3} + p^{3} T^{6} \)
5$D_{6}$ \( 1 + 2 T^{3} + p^{3} T^{6} \)
13$S_4\times C_2$ \( 1 + 24 T^{2} - 2 T^{3} + 24 p T^{4} + p^{3} T^{6} \)
17$S_4\times C_2$ \( 1 + 27 T^{2} + 8 T^{3} + 27 p T^{4} + p^{3} T^{6} \)
19$S_4\times C_2$ \( 1 + 12 T + 84 T^{2} + 420 T^{3} + 84 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
23$S_4\times C_2$ \( 1 - 6 T + 57 T^{2} - 244 T^{3} + 57 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
29$S_4\times C_2$ \( 1 + 12 T + 120 T^{2} + 702 T^{3} + 120 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
31$S_4\times C_2$ \( 1 - 6 T + 57 T^{2} - 404 T^{3} + 57 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
37$S_4\times C_2$ \( 1 + 36 T^{2} - 246 T^{3} + 36 p T^{4} + p^{3} T^{6} \)
41$S_4\times C_2$ \( 1 - 6 T + 51 T^{2} - 460 T^{3} + 51 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
43$S_4\times C_2$ \( 1 - 6 T + 117 T^{2} - 468 T^{3} + 117 p T^{4} - 6 p^{2} T^{5} + p^{3} T^{6} \)
47$S_4\times C_2$ \( 1 + 24 T + 312 T^{2} + 2584 T^{3} + 312 p T^{4} + 24 p^{2} T^{5} + p^{3} T^{6} \)
53$S_4\times C_2$ \( 1 + 111 T^{2} + 120 T^{3} + 111 p T^{4} + p^{3} T^{6} \)
59$S_4\times C_2$ \( 1 + 24 T + 264 T^{2} + 2116 T^{3} + 264 p T^{4} + 24 p^{2} T^{5} + p^{3} T^{6} \)
61$C_2$ \( ( 1 + 6 T + p T^{2} )^{3} \)
67$S_4\times C_2$ \( 1 - 12 T + 228 T^{2} - 1604 T^{3} + 228 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
71$S_4\times C_2$ \( 1 + 12 T + 165 T^{2} + 1320 T^{3} + 165 p T^{4} + 12 p^{2} T^{5} + p^{3} T^{6} \)
73$S_4\times C_2$ \( 1 + 24 T + 396 T^{2} + 3898 T^{3} + 396 p T^{4} + 24 p^{2} T^{5} + p^{3} T^{6} \)
79$S_4\times C_2$ \( 1 - 12 T + 189 T^{2} - 1640 T^{3} + 189 p T^{4} - 12 p^{2} T^{5} + p^{3} T^{6} \)
83$S_4\times C_2$ \( 1 + 18 T + 309 T^{2} + 3036 T^{3} + 309 p T^{4} + 18 p^{2} T^{5} + p^{3} T^{6} \)
89$S_4\times C_2$ \( 1 - 18 T + 183 T^{2} - 1308 T^{3} + 183 p T^{4} - 18 p^{2} T^{5} + p^{3} T^{6} \)
97$S_4\times C_2$ \( 1 + 24 T + 435 T^{2} + 4664 T^{3} + 435 p T^{4} + 24 p^{2} T^{5} + p^{3} T^{6} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{6} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.66443206941579421518092226335, −7.60016297162296456478996497000, −7.17024162920674312725068779644, −7.01274410044055943659875231003, −6.68344204850119163243784793006, −6.30955678536473927368267228141, −6.20374071753601252736034225176, −6.12083857648148381471934616399, −5.70883961689617437781690966305, −5.66595855350543456443050258933, −5.11430643124302074258383270910, −4.83510247178727026349017465189, −4.70325819566239254849441120204, −4.55990453074554203913150791641, −4.11077705057673687655577701124, −4.05348135486003288935586484516, −3.54893493682141001499897370970, −3.18705713145536501806986653068, −3.00787552768999804729073298237, −2.82739662371277195267318374258, −2.38147198097828023193021057127, −2.16200538372962757306320816267, −1.66244486548185166315553131493, −1.48142452930858493181701750356, −1.12717103163536844651935152104, 0, 0, 0, 1.12717103163536844651935152104, 1.48142452930858493181701750356, 1.66244486548185166315553131493, 2.16200538372962757306320816267, 2.38147198097828023193021057127, 2.82739662371277195267318374258, 3.00787552768999804729073298237, 3.18705713145536501806986653068, 3.54893493682141001499897370970, 4.05348135486003288935586484516, 4.11077705057673687655577701124, 4.55990453074554203913150791641, 4.70325819566239254849441120204, 4.83510247178727026349017465189, 5.11430643124302074258383270910, 5.66595855350543456443050258933, 5.70883961689617437781690966305, 6.12083857648148381471934616399, 6.20374071753601252736034225176, 6.30955678536473927368267228141, 6.68344204850119163243784793006, 7.01274410044055943659875231003, 7.17024162920674312725068779644, 7.60016297162296456478996497000, 7.66443206941579421518092226335

Graph of the $Z$-function along the critical line