Properties

Label 8-48e4-1.1-c25e4-0-0
Degree $8$
Conductor $5308416$
Sign $1$
Analytic cond. $1.30536\times 10^{9}$
Root an. cond. $13.7868$
Motivic weight $25$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.12e6·3-s + 2.66e8·5-s − 4.84e8·7-s + 2.82e12·9-s − 4.05e12·11-s + 8.26e13·13-s + 5.66e14·15-s + 1.09e15·17-s + 5.29e15·19-s − 1.03e15·21-s − 2.29e16·23-s − 3.95e17·25-s + 3.00e18·27-s − 2.25e18·29-s + 6.42e18·31-s − 8.61e18·33-s − 1.29e17·35-s − 8.45e19·37-s + 1.75e20·39-s − 1.91e20·41-s + 3.93e20·43-s + 7.52e20·45-s + 4.26e20·47-s − 1.83e21·49-s + 2.32e21·51-s + 4.16e21·53-s − 1.07e21·55-s + ⋯
L(s)  = 1  + 2.30·3-s + 0.488·5-s − 0.0132·7-s + 10/3·9-s − 0.389·11-s + 0.984·13-s + 1.12·15-s + 0.454·17-s + 0.548·19-s − 0.0305·21-s − 0.218·23-s − 1.32·25-s + 3.84·27-s − 1.18·29-s + 1.46·31-s − 0.899·33-s − 0.00645·35-s − 2.11·37-s + 2.27·39-s − 1.32·41-s + 1.50·43-s + 1.62·45-s + 0.534·47-s − 1.36·49-s + 1.04·51-s + 1.16·53-s − 0.190·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5308416 ^{s/2} \, \Gamma_{\C}(s+25/2)^{4} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(8\)
Conductor: \(5308416\)    =    \(2^{16} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(1.30536\times 10^{9}\)
Root analytic conductor: \(13.7868\)
Motivic weight: \(25\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((8,\ 5308416,\ (\ :25/2, 25/2, 25/2, 25/2),\ 1)\)

Particular Values

\(L(13)\) \(\approx\) \(44.21302500\)
\(L(\frac12)\) \(\approx\) \(44.21302500\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
3$C_1$ \( ( 1 - p^{12} T )^{4} \)
good5$C_2 \wr S_4$ \( 1 - 266436088 T + 18670153127544716 p^{2} T^{2} - \)\(50\!\cdots\!48\)\( p^{4} T^{3} + \)\(64\!\cdots\!78\)\( p^{6} T^{4} - \)\(50\!\cdots\!48\)\( p^{29} T^{5} + 18670153127544716 p^{52} T^{6} - 266436088 p^{75} T^{7} + p^{100} T^{8} \)
7$C_2 \wr S_4$ \( 1 + 69226368 p T + \)\(26\!\cdots\!04\)\( p T^{2} + \)\(27\!\cdots\!72\)\( p^{3} T^{3} + \)\(76\!\cdots\!06\)\( p^{6} T^{4} + \)\(27\!\cdots\!72\)\( p^{28} T^{5} + \)\(26\!\cdots\!04\)\( p^{51} T^{6} + 69226368 p^{76} T^{7} + p^{100} T^{8} \)
11$C_2 \wr S_4$ \( 1 + 4052955557392 T + \)\(49\!\cdots\!12\)\( p T^{2} + \)\(15\!\cdots\!40\)\( p^{3} T^{3} + \)\(84\!\cdots\!02\)\( p^{5} T^{4} + \)\(15\!\cdots\!40\)\( p^{28} T^{5} + \)\(49\!\cdots\!12\)\( p^{51} T^{6} + 4052955557392 p^{75} T^{7} + p^{100} T^{8} \)
13$C_2 \wr S_4$ \( 1 - 82663381481080 T + \)\(23\!\cdots\!68\)\( T^{2} - \)\(94\!\cdots\!88\)\( p T^{3} + \)\(12\!\cdots\!98\)\( p^{2} T^{4} - \)\(94\!\cdots\!88\)\( p^{26} T^{5} + \)\(23\!\cdots\!68\)\( p^{50} T^{6} - 82663381481080 p^{75} T^{7} + p^{100} T^{8} \)
17$C_2 \wr S_4$ \( 1 - 1091839531710728 T + \)\(18\!\cdots\!16\)\( p T^{2} + \)\(47\!\cdots\!60\)\( p^{2} T^{3} - \)\(17\!\cdots\!78\)\( p^{3} T^{4} + \)\(47\!\cdots\!60\)\( p^{27} T^{5} + \)\(18\!\cdots\!16\)\( p^{51} T^{6} - 1091839531710728 p^{75} T^{7} + p^{100} T^{8} \)
19$C_2 \wr S_4$ \( 1 - 5291818285650448 T + \)\(89\!\cdots\!44\)\( p T^{2} - \)\(49\!\cdots\!48\)\( p^{2} T^{3} + \)\(22\!\cdots\!10\)\( p^{3} T^{4} - \)\(49\!\cdots\!48\)\( p^{27} T^{5} + \)\(89\!\cdots\!44\)\( p^{51} T^{6} - 5291818285650448 p^{75} T^{7} + p^{100} T^{8} \)
23$C_2 \wr S_4$ \( 1 + 998154584418848 p T + \)\(44\!\cdots\!48\)\( p^{2} T^{2} + \)\(50\!\cdots\!40\)\( p^{3} T^{3} + \)\(10\!\cdots\!58\)\( p^{4} T^{4} + \)\(50\!\cdots\!40\)\( p^{28} T^{5} + \)\(44\!\cdots\!48\)\( p^{52} T^{6} + 998154584418848 p^{76} T^{7} + p^{100} T^{8} \)
29$C_2 \wr S_4$ \( 1 + 77792955158658312 p T + \)\(27\!\cdots\!36\)\( T^{2} - \)\(29\!\cdots\!72\)\( T^{3} - \)\(88\!\cdots\!10\)\( T^{4} - \)\(29\!\cdots\!72\)\( p^{25} T^{5} + \)\(27\!\cdots\!36\)\( p^{50} T^{6} + 77792955158658312 p^{76} T^{7} + p^{100} T^{8} \)
31$C_2 \wr S_4$ \( 1 - 6422134828063294816 T + \)\(25\!\cdots\!96\)\( T^{2} - \)\(16\!\cdots\!56\)\( T^{3} + \)\(96\!\cdots\!50\)\( T^{4} - \)\(16\!\cdots\!56\)\( p^{25} T^{5} + \)\(25\!\cdots\!96\)\( p^{50} T^{6} - 6422134828063294816 p^{75} T^{7} + p^{100} T^{8} \)
37$C_2 \wr S_4$ \( 1 + 84572383178406307176 T + \)\(77\!\cdots\!44\)\( T^{2} + \)\(10\!\cdots\!36\)\( p T^{3} + \)\(19\!\cdots\!14\)\( T^{4} + \)\(10\!\cdots\!36\)\( p^{26} T^{5} + \)\(77\!\cdots\!44\)\( p^{50} T^{6} + 84572383178406307176 p^{75} T^{7} + p^{100} T^{8} \)
41$C_2 \wr S_4$ \( 1 + \)\(19\!\cdots\!28\)\( T + \)\(35\!\cdots\!72\)\( T^{2} - \)\(11\!\cdots\!60\)\( T^{3} - \)\(14\!\cdots\!18\)\( T^{4} - \)\(11\!\cdots\!60\)\( p^{25} T^{5} + \)\(35\!\cdots\!72\)\( p^{50} T^{6} + \)\(19\!\cdots\!28\)\( p^{75} T^{7} + p^{100} T^{8} \)
43$C_2 \wr S_4$ \( 1 - \)\(39\!\cdots\!04\)\( T + \)\(24\!\cdots\!28\)\( T^{2} - \)\(58\!\cdots\!20\)\( T^{3} + \)\(23\!\cdots\!86\)\( T^{4} - \)\(58\!\cdots\!20\)\( p^{25} T^{5} + \)\(24\!\cdots\!28\)\( p^{50} T^{6} - \)\(39\!\cdots\!04\)\( p^{75} T^{7} + p^{100} T^{8} \)
47$C_2 \wr S_4$ \( 1 - \)\(42\!\cdots\!48\)\( T + \)\(17\!\cdots\!28\)\( T^{2} - \)\(80\!\cdots\!08\)\( T^{3} + \)\(14\!\cdots\!94\)\( T^{4} - \)\(80\!\cdots\!08\)\( p^{25} T^{5} + \)\(17\!\cdots\!28\)\( p^{50} T^{6} - \)\(42\!\cdots\!48\)\( p^{75} T^{7} + p^{100} T^{8} \)
53$C_2 \wr S_4$ \( 1 - \)\(41\!\cdots\!44\)\( T + \)\(45\!\cdots\!24\)\( T^{2} - \)\(11\!\cdots\!08\)\( T^{3} + \)\(79\!\cdots\!26\)\( T^{4} - \)\(11\!\cdots\!08\)\( p^{25} T^{5} + \)\(45\!\cdots\!24\)\( p^{50} T^{6} - \)\(41\!\cdots\!44\)\( p^{75} T^{7} + p^{100} T^{8} \)
59$C_2 \wr S_4$ \( 1 + \)\(22\!\cdots\!12\)\( T + \)\(24\!\cdots\!04\)\( T^{2} - \)\(97\!\cdots\!92\)\( T^{3} - \)\(29\!\cdots\!50\)\( T^{4} - \)\(97\!\cdots\!92\)\( p^{25} T^{5} + \)\(24\!\cdots\!04\)\( p^{50} T^{6} + \)\(22\!\cdots\!12\)\( p^{75} T^{7} + p^{100} T^{8} \)
61$C_2 \wr S_4$ \( 1 - \)\(31\!\cdots\!60\)\( T + \)\(19\!\cdots\!80\)\( T^{2} - \)\(40\!\cdots\!24\)\( T^{3} + \)\(13\!\cdots\!70\)\( T^{4} - \)\(40\!\cdots\!24\)\( p^{25} T^{5} + \)\(19\!\cdots\!80\)\( p^{50} T^{6} - \)\(31\!\cdots\!60\)\( p^{75} T^{7} + p^{100} T^{8} \)
67$C_2 \wr S_4$ \( 1 - \)\(10\!\cdots\!48\)\( T + \)\(18\!\cdots\!08\)\( T^{2} - \)\(12\!\cdots\!00\)\( T^{3} + \)\(12\!\cdots\!18\)\( T^{4} - \)\(12\!\cdots\!00\)\( p^{25} T^{5} + \)\(18\!\cdots\!08\)\( p^{50} T^{6} - \)\(10\!\cdots\!48\)\( p^{75} T^{7} + p^{100} T^{8} \)
71$C_2 \wr S_4$ \( 1 - \)\(26\!\cdots\!36\)\( T + \)\(74\!\cdots\!76\)\( T^{2} - \)\(10\!\cdots\!96\)\( T^{3} + \)\(18\!\cdots\!10\)\( T^{4} - \)\(10\!\cdots\!96\)\( p^{25} T^{5} + \)\(74\!\cdots\!76\)\( p^{50} T^{6} - \)\(26\!\cdots\!36\)\( p^{75} T^{7} + p^{100} T^{8} \)
73$C_2 \wr S_4$ \( 1 - \)\(96\!\cdots\!24\)\( T + \)\(39\!\cdots\!12\)\( T^{2} - \)\(52\!\cdots\!96\)\( T^{3} + \)\(20\!\cdots\!34\)\( T^{4} - \)\(52\!\cdots\!96\)\( p^{25} T^{5} + \)\(39\!\cdots\!12\)\( p^{50} T^{6} - \)\(96\!\cdots\!24\)\( p^{75} T^{7} + p^{100} T^{8} \)
79$C_2 \wr S_4$ \( 1 - \)\(22\!\cdots\!28\)\( T + \)\(10\!\cdots\!04\)\( T^{2} - \)\(17\!\cdots\!16\)\( T^{3} + \)\(41\!\cdots\!18\)\( T^{4} - \)\(17\!\cdots\!16\)\( p^{25} T^{5} + \)\(10\!\cdots\!04\)\( p^{50} T^{6} - \)\(22\!\cdots\!28\)\( p^{75} T^{7} + p^{100} T^{8} \)
83$C_2 \wr S_4$ \( 1 + \)\(50\!\cdots\!36\)\( T + \)\(26\!\cdots\!44\)\( T^{2} + \)\(14\!\cdots\!84\)\( T^{3} + \)\(33\!\cdots\!14\)\( T^{4} + \)\(14\!\cdots\!84\)\( p^{25} T^{5} + \)\(26\!\cdots\!44\)\( p^{50} T^{6} + \)\(50\!\cdots\!36\)\( p^{75} T^{7} + p^{100} T^{8} \)
89$C_2 \wr S_4$ \( 1 - \)\(93\!\cdots\!84\)\( T + \)\(49\!\cdots\!28\)\( T^{2} - \)\(17\!\cdots\!28\)\( T^{3} + \)\(46\!\cdots\!70\)\( T^{4} - \)\(17\!\cdots\!28\)\( p^{25} T^{5} + \)\(49\!\cdots\!28\)\( p^{50} T^{6} - \)\(93\!\cdots\!84\)\( p^{75} T^{7} + p^{100} T^{8} \)
97$C_2 \wr S_4$ \( 1 - \)\(17\!\cdots\!84\)\( T + \)\(23\!\cdots\!68\)\( T^{2} - \)\(22\!\cdots\!48\)\( T^{3} + \)\(17\!\cdots\!18\)\( T^{4} - \)\(22\!\cdots\!48\)\( p^{25} T^{5} + \)\(23\!\cdots\!68\)\( p^{50} T^{6} - \)\(17\!\cdots\!84\)\( p^{75} T^{7} + p^{100} T^{8} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{8} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.60111523255754678186891631242, −6.81774250907727344696150844231, −6.64819060083929881437443580360, −6.47639941654634326169756808833, −6.25817748289197178321049141222, −5.51804234032833282296454347405, −5.50620648720302064102827153653, −5.14376264981108529391410331115, −5.01372833510224481008735630989, −4.35335847708913753367135720109, −4.16262228776376066491782153026, −3.79815625953382801411029409052, −3.69470890143113387081148246603, −3.38843550612508737514040111106, −3.20778050350021977845812787701, −2.73754567272669509369242514065, −2.65956584551765634353443287004, −2.15529195210881763437653182460, −1.96690909546178480521192645363, −1.70340678770109061230423241319, −1.68875284423134276618370847208, −1.18891002909417336974421825005, −0.71813340214964862987116786123, −0.54412497720960984440852325402, −0.45336426276406373070844167847, 0.45336426276406373070844167847, 0.54412497720960984440852325402, 0.71813340214964862987116786123, 1.18891002909417336974421825005, 1.68875284423134276618370847208, 1.70340678770109061230423241319, 1.96690909546178480521192645363, 2.15529195210881763437653182460, 2.65956584551765634353443287004, 2.73754567272669509369242514065, 3.20778050350021977845812787701, 3.38843550612508737514040111106, 3.69470890143113387081148246603, 3.79815625953382801411029409052, 4.16262228776376066491782153026, 4.35335847708913753367135720109, 5.01372833510224481008735630989, 5.14376264981108529391410331115, 5.50620648720302064102827153653, 5.51804234032833282296454347405, 6.25817748289197178321049141222, 6.47639941654634326169756808833, 6.64819060083929881437443580360, 6.81774250907727344696150844231, 7.60111523255754678186891631242

Graph of the $Z$-function along the critical line