Properties

Label 2-4767-1.1-c1-0-159
Degree $2$
Conductor $4767$
Sign $1$
Analytic cond. $38.0646$
Root an. cond. $6.16965$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82·2-s − 3-s + 5.95·4-s − 1.22·5-s − 2.82·6-s + 7-s + 11.1·8-s + 9-s − 3.46·10-s + 4.62·11-s − 5.95·12-s + 1.56·13-s + 2.82·14-s + 1.22·15-s + 19.5·16-s + 5.88·17-s + 2.82·18-s − 6.41·19-s − 7.32·20-s − 21-s + 13.0·22-s + 3.54·23-s − 11.1·24-s − 3.48·25-s + 4.41·26-s − 27-s + 5.95·28-s + ⋯
L(s)  = 1  + 1.99·2-s − 0.577·3-s + 2.97·4-s − 0.549·5-s − 1.15·6-s + 0.377·7-s + 3.94·8-s + 0.333·9-s − 1.09·10-s + 1.39·11-s − 1.71·12-s + 0.433·13-s + 0.753·14-s + 0.317·15-s + 4.89·16-s + 1.42·17-s + 0.664·18-s − 1.47·19-s − 1.63·20-s − 0.218·21-s + 2.77·22-s + 0.738·23-s − 2.27·24-s − 0.697·25-s + 0.865·26-s − 0.192·27-s + 1.12·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4767 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4767 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4767\)    =    \(3 \cdot 7 \cdot 227\)
Sign: $1$
Analytic conductor: \(38.0646\)
Root analytic conductor: \(6.16965\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4767,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.129116752\)
\(L(\frac12)\) \(\approx\) \(7.129116752\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
227 \( 1 + T \)
good2 \( 1 - 2.82T + 2T^{2} \)
5 \( 1 + 1.22T + 5T^{2} \)
11 \( 1 - 4.62T + 11T^{2} \)
13 \( 1 - 1.56T + 13T^{2} \)
17 \( 1 - 5.88T + 17T^{2} \)
19 \( 1 + 6.41T + 19T^{2} \)
23 \( 1 - 3.54T + 23T^{2} \)
29 \( 1 + 5.86T + 29T^{2} \)
31 \( 1 + 3.39T + 31T^{2} \)
37 \( 1 + 10.7T + 37T^{2} \)
41 \( 1 - 1.73T + 41T^{2} \)
43 \( 1 - 9.24T + 43T^{2} \)
47 \( 1 + 2.36T + 47T^{2} \)
53 \( 1 + 9.95T + 53T^{2} \)
59 \( 1 - 8.49T + 59T^{2} \)
61 \( 1 + 13.1T + 61T^{2} \)
67 \( 1 + 0.520T + 67T^{2} \)
71 \( 1 - 5.93T + 71T^{2} \)
73 \( 1 - 5.57T + 73T^{2} \)
79 \( 1 - 9.92T + 79T^{2} \)
83 \( 1 + 2.75T + 83T^{2} \)
89 \( 1 + 0.433T + 89T^{2} \)
97 \( 1 - 12.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.78206803530036637986394188763, −7.31744569997289288003947263357, −6.47228484740707099487328992458, −6.01636187033370925496748326570, −5.26726066724897317852342555438, −4.55526359451836152285351341210, −3.73188923682652537143181583418, −3.52852064228665952577610860813, −2.06693688642671915623278154567, −1.28537614114412229340500120686, 1.28537614114412229340500120686, 2.06693688642671915623278154567, 3.52852064228665952577610860813, 3.73188923682652537143181583418, 4.55526359451836152285351341210, 5.26726066724897317852342555438, 6.01636187033370925496748326570, 6.47228484740707099487328992458, 7.31744569997289288003947263357, 7.78206803530036637986394188763

Graph of the $Z$-function along the critical line