Properties

Label 2-4767-1.1-c1-0-29
Degree $2$
Conductor $4767$
Sign $1$
Analytic cond. $38.0646$
Root an. cond. $6.16965$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.57·2-s − 3-s + 4.62·4-s + 0.687·5-s + 2.57·6-s + 7-s − 6.74·8-s + 9-s − 1.76·10-s − 3.36·11-s − 4.62·12-s + 6.07·13-s − 2.57·14-s − 0.687·15-s + 8.10·16-s − 5.49·17-s − 2.57·18-s + 1.62·19-s + 3.17·20-s − 21-s + 8.65·22-s − 1.78·23-s + 6.74·24-s − 4.52·25-s − 15.6·26-s − 27-s + 4.62·28-s + ⋯
L(s)  = 1  − 1.81·2-s − 0.577·3-s + 2.31·4-s + 0.307·5-s + 1.05·6-s + 0.377·7-s − 2.38·8-s + 0.333·9-s − 0.559·10-s − 1.01·11-s − 1.33·12-s + 1.68·13-s − 0.687·14-s − 0.177·15-s + 2.02·16-s − 1.33·17-s − 0.606·18-s + 0.373·19-s + 0.710·20-s − 0.218·21-s + 1.84·22-s − 0.372·23-s + 1.37·24-s − 0.905·25-s − 3.06·26-s − 0.192·27-s + 0.873·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4767 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4767 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4767\)    =    \(3 \cdot 7 \cdot 227\)
Sign: $1$
Analytic conductor: \(38.0646\)
Root analytic conductor: \(6.16965\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4767,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5523699908\)
\(L(\frac12)\) \(\approx\) \(0.5523699908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
227 \( 1 + T \)
good2 \( 1 + 2.57T + 2T^{2} \)
5 \( 1 - 0.687T + 5T^{2} \)
11 \( 1 + 3.36T + 11T^{2} \)
13 \( 1 - 6.07T + 13T^{2} \)
17 \( 1 + 5.49T + 17T^{2} \)
19 \( 1 - 1.62T + 19T^{2} \)
23 \( 1 + 1.78T + 23T^{2} \)
29 \( 1 + 6.70T + 29T^{2} \)
31 \( 1 - 0.373T + 31T^{2} \)
37 \( 1 + 0.687T + 37T^{2} \)
41 \( 1 - 10.7T + 41T^{2} \)
43 \( 1 + 5.83T + 43T^{2} \)
47 \( 1 - 9.85T + 47T^{2} \)
53 \( 1 + 8.46T + 53T^{2} \)
59 \( 1 + 6.25T + 59T^{2} \)
61 \( 1 + 6.53T + 61T^{2} \)
67 \( 1 + 3.91T + 67T^{2} \)
71 \( 1 - 5.03T + 71T^{2} \)
73 \( 1 - 14.2T + 73T^{2} \)
79 \( 1 + 5.34T + 79T^{2} \)
83 \( 1 + 0.277T + 83T^{2} \)
89 \( 1 - 7.06T + 89T^{2} \)
97 \( 1 - 18.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.276356180835863801882355929815, −7.76069787611087631605726824895, −7.11044270004605637003444828499, −6.06506351557402642946082699420, −5.94214693976160597201091245249, −4.69244064029647216347399069653, −3.55094854826624337446541459635, −2.29666667660593744753983605406, −1.66391915682560388238027416956, −0.55896217455050025519591518639, 0.55896217455050025519591518639, 1.66391915682560388238027416956, 2.29666667660593744753983605406, 3.55094854826624337446541459635, 4.69244064029647216347399069653, 5.94214693976160597201091245249, 6.06506351557402642946082699420, 7.11044270004605637003444828499, 7.76069787611087631605726824895, 8.276356180835863801882355929815

Graph of the $Z$-function along the critical line