Properties

Label 2-4767-1.1-c1-0-70
Degree $2$
Conductor $4767$
Sign $1$
Analytic cond. $38.0646$
Root an. cond. $6.16965$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.56·2-s − 3-s + 0.449·4-s + 1.70·5-s − 1.56·6-s + 7-s − 2.42·8-s + 9-s + 2.67·10-s − 4.11·11-s − 0.449·12-s + 1.47·13-s + 1.56·14-s − 1.70·15-s − 4.69·16-s + 2.15·17-s + 1.56·18-s + 6.20·19-s + 0.767·20-s − 21-s − 6.43·22-s − 7.80·23-s + 2.42·24-s − 2.08·25-s + 2.30·26-s − 27-s + 0.449·28-s + ⋯
L(s)  = 1  + 1.10·2-s − 0.577·3-s + 0.224·4-s + 0.763·5-s − 0.638·6-s + 0.377·7-s − 0.857·8-s + 0.333·9-s + 0.844·10-s − 1.23·11-s − 0.129·12-s + 0.409·13-s + 0.418·14-s − 0.440·15-s − 1.17·16-s + 0.522·17-s + 0.368·18-s + 1.42·19-s + 0.171·20-s − 0.218·21-s − 1.37·22-s − 1.62·23-s + 0.495·24-s − 0.417·25-s + 0.452·26-s − 0.192·27-s + 0.0849·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4767 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4767 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4767\)    =    \(3 \cdot 7 \cdot 227\)
Sign: $1$
Analytic conductor: \(38.0646\)
Root analytic conductor: \(6.16965\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4767,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.843332983\)
\(L(\frac12)\) \(\approx\) \(2.843332983\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 - T \)
227 \( 1 + T \)
good2 \( 1 - 1.56T + 2T^{2} \)
5 \( 1 - 1.70T + 5T^{2} \)
11 \( 1 + 4.11T + 11T^{2} \)
13 \( 1 - 1.47T + 13T^{2} \)
17 \( 1 - 2.15T + 17T^{2} \)
19 \( 1 - 6.20T + 19T^{2} \)
23 \( 1 + 7.80T + 23T^{2} \)
29 \( 1 - 0.926T + 29T^{2} \)
31 \( 1 - 8.21T + 31T^{2} \)
37 \( 1 - 5.77T + 37T^{2} \)
41 \( 1 - 8.51T + 41T^{2} \)
43 \( 1 - 2.17T + 43T^{2} \)
47 \( 1 - 2.18T + 47T^{2} \)
53 \( 1 - 0.0760T + 53T^{2} \)
59 \( 1 + 5.37T + 59T^{2} \)
61 \( 1 - 13.1T + 61T^{2} \)
67 \( 1 - 11.0T + 67T^{2} \)
71 \( 1 + 14.3T + 71T^{2} \)
73 \( 1 + 6.41T + 73T^{2} \)
79 \( 1 - 5.32T + 79T^{2} \)
83 \( 1 - 3.14T + 83T^{2} \)
89 \( 1 - 1.32T + 89T^{2} \)
97 \( 1 - 15.2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.040355385800618145252647652055, −7.59055070655950792347186860188, −6.38490676705549980609651172588, −5.81976337279749825617666853351, −5.45697951237960566557470351244, −4.70436019138149566353805489867, −3.97540029307712197019454050974, −2.95970294082877392047544305406, −2.18050071907658939562947155633, −0.812090276789535887855119779095, 0.812090276789535887855119779095, 2.18050071907658939562947155633, 2.95970294082877392047544305406, 3.97540029307712197019454050974, 4.70436019138149566353805489867, 5.45697951237960566557470351244, 5.81976337279749825617666853351, 6.38490676705549980609651172588, 7.59055070655950792347186860188, 8.040355385800618145252647652055

Graph of the $Z$-function along the critical line