Properties

Label 4-476e2-1.1-c1e2-0-4
Degree $4$
Conductor $226576$
Sign $1$
Analytic cond. $14.4466$
Root an. cond. $1.94958$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive no
Self-dual yes
Analytic rank $0$

Origins

Origins of factors

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s − 2·9-s + 8·11-s − 2·13-s − 15-s − 2·17-s + 10·19-s + 2·21-s + 8·23-s − 6·25-s + 2·27-s + 4·29-s + 11·31-s − 8·33-s − 2·35-s − 2·37-s + 2·39-s − 5·41-s − 5·43-s − 2·45-s + 2·47-s + 3·49-s + 2·51-s + 5·53-s + 8·55-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s − 2/3·9-s + 2.41·11-s − 0.554·13-s − 0.258·15-s − 0.485·17-s + 2.29·19-s + 0.436·21-s + 1.66·23-s − 6/5·25-s + 0.384·27-s + 0.742·29-s + 1.97·31-s − 1.39·33-s − 0.338·35-s − 0.328·37-s + 0.320·39-s − 0.780·41-s − 0.762·43-s − 0.298·45-s + 0.291·47-s + 3/7·49-s + 0.280·51-s + 0.686·53-s + 1.07·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226576 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226576 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(4\)
Conductor: \(226576\)    =    \(2^{4} \cdot 7^{2} \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(14.4466\)
Root analytic conductor: \(1.94958\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: no
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((4,\ 226576,\ (\ :1/2, 1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.556869908\)
\(L(\frac12)\) \(\approx\) \(1.556869908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$\Gal(F_p)$$F_p(T)$
bad2 \( 1 \)
7$C_1$ \( ( 1 + T )^{2} \)
17$C_1$ \( ( 1 + T )^{2} \)
good3$D_{4}$ \( 1 + T + p T^{2} + p T^{3} + p^{2} T^{4} \)
5$D_{4}$ \( 1 - T + 7 T^{2} - p T^{3} + p^{2} T^{4} \)
11$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
13$D_{4}$ \( 1 + 2 T + 14 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
19$C_2^2$ \( 1 - 10 T + 50 T^{2} - 10 p T^{3} + p^{2} T^{4} \)
23$C_2$ \( ( 1 - 4 T + p T^{2} )^{2} \)
29$D_{4}$ \( 1 - 4 T + 10 T^{2} - 4 p T^{3} + p^{2} T^{4} \)
31$D_{4}$ \( 1 - 11 T + 89 T^{2} - 11 p T^{3} + p^{2} T^{4} \)
37$D_{4}$ \( 1 + 2 T - 42 T^{2} + 2 p T^{3} + p^{2} T^{4} \)
41$D_{4}$ \( 1 + 5 T + 7 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
43$C_4$ \( 1 + 5 T + 89 T^{2} + 5 p T^{3} + p^{2} T^{4} \)
47$D_{4}$ \( 1 - 2 T + 82 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
53$D_{4}$ \( 1 - 5 T + 109 T^{2} - 5 p T^{3} + p^{2} T^{4} \)
59$C_2$ \( ( 1 + 8 T + p T^{2} )^{2} \)
61$D_{4}$ \( 1 - 13 T + 83 T^{2} - 13 p T^{3} + p^{2} T^{4} \)
67$D_{4}$ \( 1 - 9 T + 151 T^{2} - 9 p T^{3} + p^{2} T^{4} \)
71$D_{4}$ \( 1 + 14 T + 178 T^{2} + 14 p T^{3} + p^{2} T^{4} \)
73$D_{4}$ \( 1 + 3 T + 67 T^{2} + 3 p T^{3} + p^{2} T^{4} \)
79$D_{4}$ \( 1 - 2 T + 146 T^{2} - 2 p T^{3} + p^{2} T^{4} \)
83$D_{4}$ \( 1 + 8 T + 130 T^{2} + 8 p T^{3} + p^{2} T^{4} \)
89$D_{4}$ \( 1 + 6 T + 70 T^{2} + 6 p T^{3} + p^{2} T^{4} \)
97$D_{4}$ \( 1 + 23 T + 323 T^{2} + 23 p T^{3} + p^{2} T^{4} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.34248434181394264285703236965, −10.95314083862301695146980952542, −10.08259655619301986781537845446, −9.883127184923822987309935775602, −9.535795387949590173451809107347, −9.084510549202141237522329932422, −8.691166707003106484924568493522, −8.189161116476844874255524753889, −7.31021489287142883396217234915, −7.02891335494972013361125505045, −6.46591444276376579357911502264, −6.30036227906475194920740174462, −5.53163241973076577201627516367, −5.26513122644408668908041073321, −4.48996704181960298666791816275, −3.96049769465594348872907084961, −3.07996379674428868987540109033, −2.92304355581998684891020819472, −1.61734174675707997492615665344, −0.867345877778910985836202396496, 0.867345877778910985836202396496, 1.61734174675707997492615665344, 2.92304355581998684891020819472, 3.07996379674428868987540109033, 3.96049769465594348872907084961, 4.48996704181960298666791816275, 5.26513122644408668908041073321, 5.53163241973076577201627516367, 6.30036227906475194920740174462, 6.46591444276376579357911502264, 7.02891335494972013361125505045, 7.31021489287142883396217234915, 8.189161116476844874255524753889, 8.691166707003106484924568493522, 9.084510549202141237522329932422, 9.535795387949590173451809107347, 9.883127184923822987309935775602, 10.08259655619301986781537845446, 10.95314083862301695146980952542, 11.34248434181394264285703236965

Graph of the $Z$-function along the critical line