L(s) = 1 | + (−1.47 − 1.75i)2-s + (1.13 − 3.10i)3-s + (−0.563 + 3.19i)4-s + (−7.11 + 2.59i)6-s + (−2.54 − 1.46i)7-s + (2.46 − 1.42i)8-s + (−6.08 − 5.10i)9-s + (0.288 + 0.500i)11-s + (9.29 + 5.36i)12-s + (0.229 + 0.629i)13-s + (1.16 + 6.62i)14-s + (−0.0331 − 0.0120i)16-s + (0.226 + 0.269i)17-s + 18.1i·18-s + (3.86 − 2.02i)19-s + ⋯ |
L(s) = 1 | + (−1.04 − 1.24i)2-s + (0.653 − 1.79i)3-s + (−0.281 + 1.59i)4-s + (−2.90 + 1.05i)6-s + (−0.962 − 0.555i)7-s + (0.872 − 0.503i)8-s + (−2.02 − 1.70i)9-s + (0.0870 + 0.150i)11-s + (2.68 + 1.54i)12-s + (0.0635 + 0.174i)13-s + (0.312 + 1.77i)14-s + (−0.00829 − 0.00302i)16-s + (0.0548 + 0.0653i)17-s + 4.28i·18-s + (0.886 − 0.463i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.116 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.116 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.430763 + 0.383211i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.430763 + 0.383211i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-3.86 + 2.02i)T \) |
good | 2 | \( 1 + (1.47 + 1.75i)T + (-0.347 + 1.96i)T^{2} \) |
| 3 | \( 1 + (-1.13 + 3.10i)T + (-2.29 - 1.92i)T^{2} \) |
| 7 | \( 1 + (2.54 + 1.46i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-0.288 - 0.500i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-0.229 - 0.629i)T + (-9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.226 - 0.269i)T + (-2.95 + 16.7i)T^{2} \) |
| 23 | \( 1 + (4.05 + 0.715i)T + (21.6 + 7.86i)T^{2} \) |
| 29 | \( 1 + (2.30 + 1.93i)T + (5.03 + 28.5i)T^{2} \) |
| 31 | \( 1 + (0.148 - 0.257i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 8.30iT - 37T^{2} \) |
| 41 | \( 1 + (2.51 + 0.913i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-6.49 + 1.14i)T + (40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-7.09 + 8.45i)T + (-8.16 - 46.2i)T^{2} \) |
| 53 | \( 1 + (4.04 + 0.713i)T + (49.8 + 18.1i)T^{2} \) |
| 59 | \( 1 + (0.467 - 0.392i)T + (10.2 - 58.1i)T^{2} \) |
| 61 | \( 1 + (-0.178 + 1.01i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (2.14 - 2.55i)T + (-11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (2.29 + 13.0i)T + (-66.7 + 24.2i)T^{2} \) |
| 73 | \( 1 + (-2.44 + 6.70i)T + (-55.9 - 46.9i)T^{2} \) |
| 79 | \( 1 + (-1.44 - 0.527i)T + (60.5 + 50.7i)T^{2} \) |
| 83 | \( 1 + (11.5 + 6.65i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.17 - 2.24i)T + (68.1 - 57.2i)T^{2} \) |
| 97 | \( 1 + (7.84 + 9.34i)T + (-16.8 + 95.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.18884378700991034587433645313, −9.392834389800035584109682505841, −8.627202765761469093953732510437, −7.73854380456924613025091442026, −7.03175595830731051641560892082, −6.04313365661831557257060490902, −3.61352076864882052060993694390, −2.75589502544088923197032865750, −1.66676650220220515341098352162, −0.45180546908834671349072101823,
2.90984957372443607136987680507, 3.98603707515884376700217687020, 5.45112425008769462770658558993, 5.96721032478697068736389867274, 7.44626295713557330595730219176, 8.330230277066284001543831081561, 9.158789141204442803904950503124, 9.560312201113957591555733937300, 10.20920819173964355258632057769, 11.15254208180241998746742934924