L(s) = 1 | + (0.207 − 0.0366i)2-s + (0.0513 + 0.0612i)3-s + (−1.83 + 0.668i)4-s + (0.0129 + 0.0108i)6-s + (−1.46 − 0.843i)7-s + (−0.722 + 0.417i)8-s + (0.519 − 2.94i)9-s + (1.44 + 2.50i)11-s + (−0.135 − 0.0781i)12-s + (4.15 − 4.95i)13-s + (−0.334 − 0.121i)14-s + (2.86 − 2.40i)16-s + (2.94 − 0.518i)17-s − 0.631i·18-s + (4.34 + 0.288i)19-s + ⋯ |
L(s) = 1 | + (0.146 − 0.0259i)2-s + (0.0296 + 0.0353i)3-s + (−0.918 + 0.334i)4-s + (0.00527 + 0.00442i)6-s + (−0.552 − 0.318i)7-s + (−0.255 + 0.147i)8-s + (0.173 − 0.982i)9-s + (0.435 + 0.753i)11-s + (−0.0390 − 0.0225i)12-s + (1.15 − 1.37i)13-s + (−0.0894 − 0.0325i)14-s + (0.715 − 0.600i)16-s + (0.713 − 0.125i)17-s − 0.148i·18-s + (0.997 + 0.0662i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.690 + 0.723i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.690 + 0.723i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.09587 - 0.468860i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09587 - 0.468860i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 19 | \( 1 + (-4.34 - 0.288i)T \) |
good | 2 | \( 1 + (-0.207 + 0.0366i)T + (1.87 - 0.684i)T^{2} \) |
| 3 | \( 1 + (-0.0513 - 0.0612i)T + (-0.520 + 2.95i)T^{2} \) |
| 7 | \( 1 + (1.46 + 0.843i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.44 - 2.50i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-4.15 + 4.95i)T + (-2.25 - 12.8i)T^{2} \) |
| 17 | \( 1 + (-2.94 + 0.518i)T + (15.9 - 5.81i)T^{2} \) |
| 23 | \( 1 + (2.82 + 7.75i)T + (-17.6 + 14.7i)T^{2} \) |
| 29 | \( 1 + (1.26 - 7.14i)T + (-27.2 - 9.91i)T^{2} \) |
| 31 | \( 1 + (2.02 - 3.51i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 7.96iT - 37T^{2} \) |
| 41 | \( 1 + (-4.17 + 3.50i)T + (7.11 - 40.3i)T^{2} \) |
| 43 | \( 1 + (1.82 - 5.01i)T + (-32.9 - 27.6i)T^{2} \) |
| 47 | \( 1 + (1.62 + 0.286i)T + (44.1 + 16.0i)T^{2} \) |
| 53 | \( 1 + (0.653 + 1.79i)T + (-40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (0.616 + 3.49i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-7.42 + 2.70i)T + (46.7 - 39.2i)T^{2} \) |
| 67 | \( 1 + (2.23 + 0.393i)T + (62.9 + 22.9i)T^{2} \) |
| 71 | \( 1 + (9.79 + 3.56i)T + (54.3 + 45.6i)T^{2} \) |
| 73 | \( 1 + (-0.907 - 1.08i)T + (-12.6 + 71.8i)T^{2} \) |
| 79 | \( 1 + (-1.84 + 1.54i)T + (13.7 - 77.7i)T^{2} \) |
| 83 | \( 1 + (-9.87 - 5.70i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-7.74 - 6.50i)T + (15.4 + 87.6i)T^{2} \) |
| 97 | \( 1 + (9.71 - 1.71i)T + (91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.71937863597470124920793028048, −9.888360619025494373721503994900, −9.170412560719356231241941382589, −8.296170649059984899592157730893, −7.26077256174845185878592707789, −6.16729072437128932852685307012, −5.12708427990186652693867087276, −3.81750952036051144636443135351, −3.27463738631818672229260286754, −0.829472107878822969016180300753,
1.46687042565100987532776733918, 3.38883399142834457518741858281, 4.29637582747518277242130319374, 5.58638502554721261867332594656, 6.17155639838315313665585758174, 7.60402570247491512438199903757, 8.539789199411964785766210477801, 9.415873754378035998431021199737, 9.973364939768050762462928951489, 11.27170951834501698215901881037