| L(s)  = 1 | + 2-s   + 3.12·3-s   + 4-s   + 5-s   + 3.12·6-s   − 0.193·7-s   + 8-s   + 6.78·9-s   + 10-s   − 11-s   + 3.12·12-s   + 6.24·13-s   − 0.193·14-s   + 3.12·15-s   + 16-s   + 4.69·17-s   + 6.78·18-s   − 3.31·19-s   + 20-s   − 0.605·21-s   − 22-s   − 4.24·23-s   + 3.12·24-s   + 25-s   + 6.24·26-s   + 11.8·27-s   − 0.193·28-s  + ⋯ | 
| L(s)  = 1 | + 0.707·2-s   + 1.80·3-s   + 0.5·4-s   + 0.447·5-s   + 1.27·6-s   − 0.0731·7-s   + 0.353·8-s   + 2.26·9-s   + 0.316·10-s   − 0.301·11-s   + 0.903·12-s   + 1.73·13-s   − 0.0517·14-s   + 0.807·15-s   + 0.250·16-s   + 1.13·17-s   + 1.59·18-s   − 0.761·19-s   + 0.223·20-s   − 0.132·21-s   − 0.213·22-s   − 0.886·23-s   + 0.638·24-s   + 0.200·25-s   + 1.22·26-s   + 2.28·27-s   − 0.0365·28-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 4730 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4730 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(7.130467673\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(7.130467673\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | 
|---|
| bad | 2 | \( 1 - T \) | 
|  | 5 | \( 1 - T \) | 
|  | 11 | \( 1 + T \) | 
|  | 43 | \( 1 - T \) | 
| good | 3 | \( 1 - 3.12T + 3T^{2} \) | 
|  | 7 | \( 1 + 0.193T + 7T^{2} \) | 
|  | 13 | \( 1 - 6.24T + 13T^{2} \) | 
|  | 17 | \( 1 - 4.69T + 17T^{2} \) | 
|  | 19 | \( 1 + 3.31T + 19T^{2} \) | 
|  | 23 | \( 1 + 4.24T + 23T^{2} \) | 
|  | 29 | \( 1 + 3.16T + 29T^{2} \) | 
|  | 31 | \( 1 + 4.43T + 31T^{2} \) | 
|  | 37 | \( 1 + 9.89T + 37T^{2} \) | 
|  | 41 | \( 1 + 6.26T + 41T^{2} \) | 
|  | 47 | \( 1 - 5.29T + 47T^{2} \) | 
|  | 53 | \( 1 - 9.92T + 53T^{2} \) | 
|  | 59 | \( 1 - 13.1T + 59T^{2} \) | 
|  | 61 | \( 1 + 11.8T + 61T^{2} \) | 
|  | 67 | \( 1 + 12.5T + 67T^{2} \) | 
|  | 71 | \( 1 - 7.75T + 71T^{2} \) | 
|  | 73 | \( 1 + 5.20T + 73T^{2} \) | 
|  | 79 | \( 1 + 4.61T + 79T^{2} \) | 
|  | 83 | \( 1 + 1.70T + 83T^{2} \) | 
|  | 89 | \( 1 + 5.37T + 89T^{2} \) | 
|  | 97 | \( 1 + 2.37T + 97T^{2} \) | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.467551501846777607759061898799, −7.61861530705069056726716806354, −6.96289758480569140135735006426, −6.06020433320541590949023286585, −5.38096135520647808054760734206, −4.19242288012464573151339029146, −3.62375168379732252714482659430, −3.10075796695319383267878775483, −2.05726273503079414713591679882, −1.47374920379272516696865367168, 
1.47374920379272516696865367168, 2.05726273503079414713591679882, 3.10075796695319383267878775483, 3.62375168379732252714482659430, 4.19242288012464573151339029146, 5.38096135520647808054760734206, 6.06020433320541590949023286585, 6.96289758480569140135735006426, 7.61861530705069056726716806354, 8.467551501846777607759061898799
