Properties

Label 2-4725-1.1-c1-0-28
Degree $2$
Conductor $4725$
Sign $1$
Analytic cond. $37.7293$
Root an. cond. $6.14241$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.618·2-s − 1.61·4-s + 7-s − 2.23·8-s − 3.47·11-s + 6.09·13-s + 0.618·14-s + 1.85·16-s − 6.61·17-s + 0.381·19-s − 2.14·22-s − 4.38·23-s + 3.76·26-s − 1.61·28-s + 2.85·29-s + 3·31-s + 5.61·32-s − 4.09·34-s + 3·37-s + 0.236·38-s − 0.618·41-s + 7.76·43-s + 5.61·44-s − 2.70·46-s − 10.7·47-s + 49-s − 9.85·52-s + ⋯
L(s)  = 1  + 0.437·2-s − 0.809·4-s + 0.377·7-s − 0.790·8-s − 1.04·11-s + 1.68·13-s + 0.165·14-s + 0.463·16-s − 1.60·17-s + 0.0876·19-s − 0.457·22-s − 0.913·23-s + 0.738·26-s − 0.305·28-s + 0.529·29-s + 0.538·31-s + 0.993·32-s − 0.701·34-s + 0.493·37-s + 0.0382·38-s − 0.0965·41-s + 1.18·43-s + 0.846·44-s − 0.399·46-s − 1.56·47-s + 0.142·49-s − 1.36·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4725 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4725\)    =    \(3^{3} \cdot 5^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(37.7293\)
Root analytic conductor: \(6.14241\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4725,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.621020306\)
\(L(\frac12)\) \(\approx\) \(1.621020306\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
good2 \( 1 - 0.618T + 2T^{2} \)
11 \( 1 + 3.47T + 11T^{2} \)
13 \( 1 - 6.09T + 13T^{2} \)
17 \( 1 + 6.61T + 17T^{2} \)
19 \( 1 - 0.381T + 19T^{2} \)
23 \( 1 + 4.38T + 23T^{2} \)
29 \( 1 - 2.85T + 29T^{2} \)
31 \( 1 - 3T + 31T^{2} \)
37 \( 1 - 3T + 37T^{2} \)
41 \( 1 + 0.618T + 41T^{2} \)
43 \( 1 - 7.76T + 43T^{2} \)
47 \( 1 + 10.7T + 47T^{2} \)
53 \( 1 + 6.61T + 53T^{2} \)
59 \( 1 - 10.7T + 59T^{2} \)
61 \( 1 - 1.14T + 61T^{2} \)
67 \( 1 + 12.7T + 67T^{2} \)
71 \( 1 - 8.85T + 71T^{2} \)
73 \( 1 - 2.52T + 73T^{2} \)
79 \( 1 - 10.7T + 79T^{2} \)
83 \( 1 - 14.4T + 83T^{2} \)
89 \( 1 - 13.4T + 89T^{2} \)
97 \( 1 + 16.0T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.268681500946009289345468684616, −7.86929208393732076802756136123, −6.56504056477106466981110945777, −6.09021254005823176396813808602, −5.24524811919679143749375714820, −4.54637875368111877557221348453, −3.93452712835407693228750706818, −3.04047233306564073786069237772, −2.00643455151545433260995511243, −0.65688371009630814879962058150, 0.65688371009630814879962058150, 2.00643455151545433260995511243, 3.04047233306564073786069237772, 3.93452712835407693228750706818, 4.54637875368111877557221348453, 5.24524811919679143749375714820, 6.09021254005823176396813808602, 6.56504056477106466981110945777, 7.86929208393732076802756136123, 8.268681500946009289345468684616

Graph of the $Z$-function along the critical line