Properties

Label 2-4719-1.1-c1-0-49
Degree $2$
Conductor $4719$
Sign $1$
Analytic cond. $37.6814$
Root an. cond. $6.13851$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.61·2-s + 3-s + 0.611·4-s − 2.09·5-s − 1.61·6-s + 4.41·7-s + 2.24·8-s + 9-s + 3.39·10-s + 0.611·12-s − 13-s − 7.12·14-s − 2.09·15-s − 4.84·16-s − 7.08·17-s − 1.61·18-s + 0.946·19-s − 1.28·20-s + 4.41·21-s − 4.97·23-s + 2.24·24-s − 0.592·25-s + 1.61·26-s + 27-s + 2.69·28-s + 4.98·29-s + 3.39·30-s + ⋯
L(s)  = 1  − 1.14·2-s + 0.577·3-s + 0.305·4-s − 0.938·5-s − 0.659·6-s + 1.66·7-s + 0.793·8-s + 0.333·9-s + 1.07·10-s + 0.176·12-s − 0.277·13-s − 1.90·14-s − 0.542·15-s − 1.21·16-s − 1.71·17-s − 0.380·18-s + 0.217·19-s − 0.287·20-s + 0.962·21-s − 1.03·23-s + 0.457·24-s − 0.118·25-s + 0.316·26-s + 0.192·27-s + 0.509·28-s + 0.926·29-s + 0.619·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4719 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4719 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4719\)    =    \(3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(37.6814\)
Root analytic conductor: \(6.13851\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4719,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.079294467\)
\(L(\frac12)\) \(\approx\) \(1.079294467\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 + 1.61T + 2T^{2} \)
5 \( 1 + 2.09T + 5T^{2} \)
7 \( 1 - 4.41T + 7T^{2} \)
17 \( 1 + 7.08T + 17T^{2} \)
19 \( 1 - 0.946T + 19T^{2} \)
23 \( 1 + 4.97T + 23T^{2} \)
29 \( 1 - 4.98T + 29T^{2} \)
31 \( 1 - 7.88T + 31T^{2} \)
37 \( 1 - 7.76T + 37T^{2} \)
41 \( 1 + 0.497T + 41T^{2} \)
43 \( 1 + 11.1T + 43T^{2} \)
47 \( 1 - 1.21T + 47T^{2} \)
53 \( 1 - 1.09T + 53T^{2} \)
59 \( 1 + 0.0922T + 59T^{2} \)
61 \( 1 - 9.66T + 61T^{2} \)
67 \( 1 - 8.50T + 67T^{2} \)
71 \( 1 - 16.1T + 71T^{2} \)
73 \( 1 + 3.11T + 73T^{2} \)
79 \( 1 - 2.44T + 79T^{2} \)
83 \( 1 + 13.7T + 83T^{2} \)
89 \( 1 - 7.34T + 89T^{2} \)
97 \( 1 + 7.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.224463950812795580132763918449, −8.046465442023617782660531800917, −7.23374133157710446295336491582, −6.51274085357827559923633738910, −5.05256172229095166011809387860, −4.46566481780139791145542848895, −3.98650401392663614603228219232, −2.49783950717939616235088505378, −1.79261663620241562993709579782, −0.67987556077205515327023495810, 0.67987556077205515327023495810, 1.79261663620241562993709579782, 2.49783950717939616235088505378, 3.98650401392663614603228219232, 4.46566481780139791145542848895, 5.05256172229095166011809387860, 6.51274085357827559923633738910, 7.23374133157710446295336491582, 8.046465442023617782660531800917, 8.224463950812795580132763918449

Graph of the $Z$-function along the critical line