Properties

Label 2-4719-1.1-c1-0-160
Degree $2$
Conductor $4719$
Sign $1$
Analytic cond. $37.6814$
Root an. cond. $6.13851$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.24·2-s + 3-s + 3.03·4-s + 0.599·5-s + 2.24·6-s + 4.24·7-s + 2.32·8-s + 9-s + 1.34·10-s + 3.03·12-s − 13-s + 9.51·14-s + 0.599·15-s − 0.852·16-s + 3.82·17-s + 2.24·18-s + 5.08·19-s + 1.81·20-s + 4.24·21-s − 8.18·23-s + 2.32·24-s − 4.64·25-s − 2.24·26-s + 27-s + 12.8·28-s + 5.00·29-s + 1.34·30-s + ⋯
L(s)  = 1  + 1.58·2-s + 0.577·3-s + 1.51·4-s + 0.268·5-s + 0.916·6-s + 1.60·7-s + 0.822·8-s + 0.333·9-s + 0.425·10-s + 0.876·12-s − 0.277·13-s + 2.54·14-s + 0.154·15-s − 0.213·16-s + 0.927·17-s + 0.528·18-s + 1.16·19-s + 0.406·20-s + 0.925·21-s − 1.70·23-s + 0.474·24-s − 0.928·25-s − 0.440·26-s + 0.192·27-s + 2.43·28-s + 0.928·29-s + 0.245·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4719 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4719 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4719\)    =    \(3 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(37.6814\)
Root analytic conductor: \(6.13851\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 4719,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.822940322\)
\(L(\frac12)\) \(\approx\) \(7.822940322\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - 2.24T + 2T^{2} \)
5 \( 1 - 0.599T + 5T^{2} \)
7 \( 1 - 4.24T + 7T^{2} \)
17 \( 1 - 3.82T + 17T^{2} \)
19 \( 1 - 5.08T + 19T^{2} \)
23 \( 1 + 8.18T + 23T^{2} \)
29 \( 1 - 5.00T + 29T^{2} \)
31 \( 1 - 4.79T + 31T^{2} \)
37 \( 1 + 1.22T + 37T^{2} \)
41 \( 1 + 7.87T + 41T^{2} \)
43 \( 1 - 7.54T + 43T^{2} \)
47 \( 1 + 4.90T + 47T^{2} \)
53 \( 1 - 12.4T + 53T^{2} \)
59 \( 1 - 2.91T + 59T^{2} \)
61 \( 1 + 5.50T + 61T^{2} \)
67 \( 1 - 11.8T + 67T^{2} \)
71 \( 1 + 10.7T + 71T^{2} \)
73 \( 1 + 8.14T + 73T^{2} \)
79 \( 1 + 9.23T + 79T^{2} \)
83 \( 1 + 0.172T + 83T^{2} \)
89 \( 1 + 7.65T + 89T^{2} \)
97 \( 1 - 15.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.025233049066131389969260105427, −7.61559334426814723354262265934, −6.71703179902989581774037746868, −5.69797736927207845240091768984, −5.35312106701078905172953772750, −4.49053576519580921524540258258, −3.96715499941070748609610864394, −3.01577071914860625970007785543, −2.20906473150044869137284492248, −1.38783604197327974492164826229, 1.38783604197327974492164826229, 2.20906473150044869137284492248, 3.01577071914860625970007785543, 3.96715499941070748609610864394, 4.49053576519580921524540258258, 5.35312106701078905172953772750, 5.69797736927207845240091768984, 6.71703179902989581774037746868, 7.61559334426814723354262265934, 8.025233049066131389969260105427

Graph of the $Z$-function along the critical line