| L(s) = 1 | − 11.9i·5-s + (26.4 + 15.2i)7-s + (36.8 − 21.2i)11-s + (33.9 + 32.2i)13-s + (−26.3 + 45.6i)17-s + (−111. − 64.5i)19-s + (54.2 + 93.9i)23-s − 18.5·25-s + (44.1 + 76.5i)29-s + 32.1i·31-s + (183. − 317. i)35-s + (300. − 173. i)37-s + (−157. + 90.9i)41-s + (37.8 − 65.5i)43-s − 307. i·47-s + ⋯ |
| L(s) = 1 | − 1.07i·5-s + (1.42 + 0.824i)7-s + (1.00 − 0.582i)11-s + (0.724 + 0.688i)13-s + (−0.375 + 0.650i)17-s + (−1.34 − 0.778i)19-s + (0.491 + 0.852i)23-s − 0.148·25-s + (0.282 + 0.489i)29-s + 0.186i·31-s + (0.884 − 1.53i)35-s + (1.33 − 0.769i)37-s + (−0.600 + 0.346i)41-s + (0.134 − 0.232i)43-s − 0.953i·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(2.505731380\) |
| \(L(\frac12)\) |
\(\approx\) |
\(2.505731380\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-33.9 - 32.2i)T \) |
| good | 5 | \( 1 + 11.9iT - 125T^{2} \) |
| 7 | \( 1 + (-26.4 - 15.2i)T + (171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-36.8 + 21.2i)T + (665.5 - 1.15e3i)T^{2} \) |
| 17 | \( 1 + (26.3 - 45.6i)T + (-2.45e3 - 4.25e3i)T^{2} \) |
| 19 | \( 1 + (111. + 64.5i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-54.2 - 93.9i)T + (-6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-44.1 - 76.5i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 - 32.1iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (-300. + 173. i)T + (2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 + (157. - 90.9i)T + (3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-37.8 + 65.5i)T + (-3.97e4 - 6.88e4i)T^{2} \) |
| 47 | \( 1 + 307. iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 693.T + 1.48e5T^{2} \) |
| 59 | \( 1 + (314. + 181. i)T + (1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-214. + 371. i)T + (-1.13e5 - 1.96e5i)T^{2} \) |
| 67 | \( 1 + (169. - 98.1i)T + (1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + (-907. - 523. i)T + (1.78e5 + 3.09e5i)T^{2} \) |
| 73 | \( 1 + 234. iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 409.T + 4.93e5T^{2} \) |
| 83 | \( 1 - 13.1iT - 5.71e5T^{2} \) |
| 89 | \( 1 + (552. - 319. i)T + (3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + (1.06e3 + 612. i)T + (4.56e5 + 7.90e5i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.95457493904372565103560053842, −9.288635436461500075071976123630, −8.645246381645969914649869621246, −8.351458109010673190235690849874, −6.79614812460492676369548097324, −5.74454869380252679624809953676, −4.79785845979626492873680270905, −3.96203553646849543080974516559, −2.04873330578836904690069129941, −1.09633555607508124195177276802,
1.09562289194036741743452991968, 2.43153494763520883815560188095, 3.91174172212997904210333341157, 4.67455306284264714812859967926, 6.19073272634838074832069861345, 6.95985228656816957434545721159, 7.87757185205050264806694714304, 8.692806844116309086830722730783, 10.03024078404173314466350198287, 10.79057557818388410270027929272