L(s) = 1 | + (−0.958 − 1.44i)3-s + (1.10 + 1.90i)5-s + 0.307·7-s + (−1.16 + 2.76i)9-s + (1.15 + 1.99i)11-s + (−0.675 + 3.54i)13-s + (1.69 − 3.41i)15-s + (1.19 + 2.07i)17-s + (−0.584 − 1.01i)19-s + (−0.294 − 0.443i)21-s + 5.42·23-s + (0.0716 − 0.124i)25-s + (5.10 − 0.968i)27-s + (0.871 + 1.51i)29-s + (−0.0271 − 0.0470i)31-s + ⋯ |
L(s) = 1 | + (−0.553 − 0.833i)3-s + (0.492 + 0.853i)5-s + 0.116·7-s + (−0.388 + 0.921i)9-s + (0.348 + 0.602i)11-s + (−0.187 + 0.982i)13-s + (0.438 − 0.882i)15-s + (0.290 + 0.502i)17-s + (−0.134 − 0.232i)19-s + (−0.0642 − 0.0968i)21-s + 1.13·23-s + (0.0143 − 0.0248i)25-s + (0.982 − 0.186i)27-s + (0.161 + 0.280i)29-s + (−0.00488 − 0.00845i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.857 - 0.515i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.857 - 0.515i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.19937 + 0.332673i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19937 + 0.332673i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.958 + 1.44i)T \) |
| 13 | \( 1 + (0.675 - 3.54i)T \) |
good | 5 | \( 1 + (-1.10 - 1.90i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 - 0.307T + 7T^{2} \) |
| 11 | \( 1 + (-1.15 - 1.99i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.19 - 2.07i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.584 + 1.01i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.42T + 23T^{2} \) |
| 29 | \( 1 + (-0.871 - 1.51i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.0271 + 0.0470i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (3.35 - 5.80i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 4.53T + 41T^{2} \) |
| 43 | \( 1 - 5.38T + 43T^{2} \) |
| 47 | \( 1 + (0.294 - 0.510i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 9.12T + 53T^{2} \) |
| 59 | \( 1 + (-5.48 + 9.49i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 4.04T + 61T^{2} \) |
| 67 | \( 1 + 12.1T + 67T^{2} \) |
| 71 | \( 1 + (2.27 + 3.93i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 9.91T + 73T^{2} \) |
| 79 | \( 1 + (1.35 - 2.35i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.49 - 9.51i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (2.65 - 4.59i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 13.7T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.13571889320875845702124518587, −10.40964218213605965861700843650, −9.397761951700847259861907945626, −8.275814594530207128219446840735, −7.01056448532935911507942358528, −6.74865048419709389873687182049, −5.64710085666671430179012922445, −4.46985670037083697444640282236, −2.76231559658896890746824943142, −1.59551160790879627715637121616,
0.906860088874925950308382949725, 3.03187909257294074598088101209, 4.31540780365371640761375303665, 5.35658496711136753495284434136, 5.84411635599218950580939951950, 7.23975537595046957392937647611, 8.597144775722751173624798623585, 9.173717267638372787751272353888, 10.08716303953803361199246692557, 10.87318211895909580460668065767