L(s) = 1 | + (−0.674 − 1.59i)3-s + (−0.0842 + 0.145i)5-s − 2.38·7-s + (−2.08 + 2.15i)9-s + (−1.73 + 3.01i)11-s + (−3.24 − 1.57i)13-s + (0.289 + 0.0359i)15-s + (2.47 − 4.28i)17-s + (−3.33 + 5.77i)19-s + (1.61 + 3.80i)21-s − 6.09·23-s + (2.48 + 4.30i)25-s + (4.84 + 1.87i)27-s + (1.83 − 3.18i)29-s + (−1.42 + 2.47i)31-s + ⋯ |
L(s) = 1 | + (−0.389 − 0.920i)3-s + (−0.0376 + 0.0652i)5-s − 0.902·7-s + (−0.696 + 0.717i)9-s + (−0.524 + 0.908i)11-s + (−0.900 − 0.435i)13-s + (0.0748 + 0.00927i)15-s + (0.600 − 1.04i)17-s + (−0.765 + 1.32i)19-s + (0.351 + 0.830i)21-s − 1.27·23-s + (0.497 + 0.861i)25-s + (0.932 + 0.361i)27-s + (0.341 − 0.590i)29-s + (−0.256 + 0.444i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.712 - 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.712 - 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0328164 + 0.0800379i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0328164 + 0.0800379i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.674 + 1.59i)T \) |
| 13 | \( 1 + (3.24 + 1.57i)T \) |
good | 5 | \( 1 + (0.0842 - 0.145i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + 2.38T + 7T^{2} \) |
| 11 | \( 1 + (1.73 - 3.01i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.47 + 4.28i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.33 - 5.77i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 6.09T + 23T^{2} \) |
| 29 | \( 1 + (-1.83 + 3.18i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.42 - 2.47i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.36 - 2.37i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 8.32T + 41T^{2} \) |
| 43 | \( 1 + 6.24T + 43T^{2} \) |
| 47 | \( 1 + (4.39 + 7.60i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 14.0T + 53T^{2} \) |
| 59 | \( 1 + (0.411 + 0.712i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 10.1T + 61T^{2} \) |
| 67 | \( 1 - 10.8T + 67T^{2} \) |
| 71 | \( 1 + (-2.14 + 3.71i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 14.0T + 73T^{2} \) |
| 79 | \( 1 + (1.51 + 2.61i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.944 + 1.63i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.27 + 3.93i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 3.53T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.68480408128798628155151982193, −10.15301298397315779859445502815, −9.994294063912406221275943522939, −8.446799999153046194590634378462, −7.53886535011029926284012940371, −6.87340130027253045338712453749, −5.83662009997965069248002497664, −4.89771513285948844172114066214, −3.22522030388533227383830662694, −1.99565202161489273275970813364,
0.05144507664902152654268454233, 2.72323331229146972143691809622, 3.83121627239776497283419720045, 4.89439217213975385523375374961, 5.96772625742273017593272230271, 6.72261986315563680020863419651, 8.205933064140567450896795160575, 9.004777464312933279683759343800, 10.00973671926206414491099403537, 10.48620247022965844747683800162