| L(s) = 1 | + (−1.43 + 0.970i)3-s + (−0.883 + 1.52i)5-s + 3.13·7-s + (1.11 − 2.78i)9-s + (−0.284 + 0.492i)11-s + (1.34 + 3.34i)13-s + (−0.216 − 3.05i)15-s + (−0.233 + 0.404i)17-s + (−3.16 + 5.48i)19-s + (−4.49 + 3.03i)21-s − 9.40·23-s + (0.939 + 1.62i)25-s + (1.09 + 5.07i)27-s + (−1.69 + 2.93i)29-s + (2.42 − 4.19i)31-s + ⋯ |
| L(s) = 1 | + (−0.828 + 0.560i)3-s + (−0.395 + 0.684i)5-s + 1.18·7-s + (0.372 − 0.927i)9-s + (−0.0858 + 0.148i)11-s + (0.371 + 0.928i)13-s + (−0.0559 − 0.788i)15-s + (−0.0566 + 0.0980i)17-s + (−0.726 + 1.25i)19-s + (−0.980 + 0.662i)21-s − 1.96·23-s + (0.187 + 0.325i)25-s + (0.211 + 0.977i)27-s + (−0.314 + 0.544i)29-s + (0.434 − 0.753i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.427 - 0.904i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 468 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.427 - 0.904i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.501173 + 0.791358i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.501173 + 0.791358i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.43 - 0.970i)T \) |
| 13 | \( 1 + (-1.34 - 3.34i)T \) |
| good | 5 | \( 1 + (0.883 - 1.52i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 3.13T + 7T^{2} \) |
| 11 | \( 1 + (0.284 - 0.492i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (0.233 - 0.404i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.16 - 5.48i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 9.40T + 23T^{2} \) |
| 29 | \( 1 + (1.69 - 2.93i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-2.42 + 4.19i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.936 - 1.62i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 3.09T + 41T^{2} \) |
| 43 | \( 1 + 8.82T + 43T^{2} \) |
| 47 | \( 1 + (-5.16 - 8.95i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 - 8.24T + 53T^{2} \) |
| 59 | \( 1 + (5.02 + 8.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 - 13.6T + 61T^{2} \) |
| 67 | \( 1 - 4.58T + 67T^{2} \) |
| 71 | \( 1 + (5.25 - 9.10i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 3.76T + 73T^{2} \) |
| 79 | \( 1 + (4.23 + 7.33i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.06 + 1.83i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (2.53 + 4.39i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 2.79T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.41015688113530362981248827678, −10.54186698153317297930820845389, −9.822504909118407046668047062550, −8.552790430329063075381717232388, −7.67180019519108244253292736896, −6.55449117343147242605926981554, −5.70130998778088377768979922635, −4.46681400250804645255193705003, −3.78379259426910884908344448203, −1.81315523039591897230588013608,
0.65770618125649766379763565464, 2.14931559020659546046714506988, 4.20779780460131317435094241970, 5.04892419265522210015661766026, 5.91847674891646164498504321880, 7.10456435677181165769838211716, 8.171872399501105032969378678694, 8.492569255324894682552657831288, 10.13551867868261879907830294870, 10.91751790339612668157677567226