L(s) = 1 | + 1.21·2-s + 2.36·3-s − 0.515·4-s + 2.87·6-s + 0.846·7-s − 3.06·8-s + 2.58·9-s − 11-s − 1.21·12-s + 0.935·13-s + 1.03·14-s − 2.70·16-s + 17-s + 3.14·18-s + 5.75·19-s + 2·21-s − 1.21·22-s − 2.54·23-s − 7.24·24-s + 1.13·26-s − 0.990·27-s − 0.436·28-s + 9.45·29-s + 4.12·31-s + 2.83·32-s − 2.36·33-s + 1.21·34-s + ⋯ |
L(s) = 1 | + 0.861·2-s + 1.36·3-s − 0.257·4-s + 1.17·6-s + 0.319·7-s − 1.08·8-s + 0.860·9-s − 0.301·11-s − 0.351·12-s + 0.259·13-s + 0.275·14-s − 0.675·16-s + 0.242·17-s + 0.741·18-s + 1.32·19-s + 0.436·21-s − 0.259·22-s − 0.531·23-s − 1.47·24-s + 0.223·26-s − 0.190·27-s − 0.0825·28-s + 1.75·29-s + 0.741·31-s + 0.501·32-s − 0.411·33-s + 0.208·34-s + ⋯ |
Λ(s)=(=(4675s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(4675s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.501001345 |
L(21) |
≈ |
4.501001345 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+T |
| 17 | 1−T |
good | 2 | 1−1.21T+2T2 |
| 3 | 1−2.36T+3T2 |
| 7 | 1−0.846T+7T2 |
| 13 | 1−0.935T+13T2 |
| 19 | 1−5.75T+19T2 |
| 23 | 1+2.54T+23T2 |
| 29 | 1−9.45T+29T2 |
| 31 | 1−4.12T+31T2 |
| 37 | 1−0.776T+37T2 |
| 41 | 1+2.54T+41T2 |
| 43 | 1−12.5T+43T2 |
| 47 | 1−3.81T+47T2 |
| 53 | 1−7.94T+53T2 |
| 59 | 1−11.8T+59T2 |
| 61 | 1+9.72T+61T2 |
| 67 | 1+1.13T+67T2 |
| 71 | 1+6.87T+71T2 |
| 73 | 1−9.13T+73T2 |
| 79 | 1−10.8T+79T2 |
| 83 | 1−9.10T+83T2 |
| 89 | 1+0.835T+89T2 |
| 97 | 1+8.21T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.227305018659894591812886978055, −7.84534792311009503447869099393, −6.87996653860080187659039300898, −5.93613894518723919906825109512, −5.22683762668709111034486538608, −4.41824722826831634403782856247, −3.73856900327122958065009695992, −2.97534975684993375382473718888, −2.42345514140626795396446306676, −1.00834730735439999590031028305,
1.00834730735439999590031028305, 2.42345514140626795396446306676, 2.97534975684993375382473718888, 3.73856900327122958065009695992, 4.41824722826831634403782856247, 5.22683762668709111034486538608, 5.93613894518723919906825109512, 6.87996653860080187659039300898, 7.84534792311009503447869099393, 8.227305018659894591812886978055