Properties

Label 2-465-31.18-c1-0-8
Degree $2$
Conductor $465$
Sign $0.842 - 0.539i$
Analytic cond. $3.71304$
Root an. cond. $1.92692$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.671 − 0.488i)2-s + (0.913 − 0.406i)3-s + (−0.405 + 1.24i)4-s + (0.5 + 0.866i)5-s + (0.415 − 0.719i)6-s + (0.743 + 0.825i)7-s + (0.849 + 2.61i)8-s + (0.669 − 0.743i)9-s + (0.758 + 0.337i)10-s + (−2.72 + 0.579i)11-s + (0.137 + 1.30i)12-s + (−0.521 + 4.95i)13-s + (0.902 + 0.191i)14-s + (0.809 + 0.587i)15-s + (−0.274 − 0.199i)16-s + (7.11 + 1.51i)17-s + ⋯
L(s)  = 1  + (0.474 − 0.345i)2-s + (0.527 − 0.234i)3-s + (−0.202 + 0.623i)4-s + (0.223 + 0.387i)5-s + (0.169 − 0.293i)6-s + (0.280 + 0.312i)7-s + (0.300 + 0.924i)8-s + (0.223 − 0.247i)9-s + (0.239 + 0.106i)10-s + (−0.822 + 0.174i)11-s + (0.0395 + 0.376i)12-s + (−0.144 + 1.37i)13-s + (0.241 + 0.0512i)14-s + (0.208 + 0.151i)15-s + (−0.0686 − 0.0498i)16-s + (1.72 + 0.366i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.842 - 0.539i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 465 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.842 - 0.539i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(465\)    =    \(3 \cdot 5 \cdot 31\)
Sign: $0.842 - 0.539i$
Analytic conductor: \(3.71304\)
Root analytic conductor: \(1.92692\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{465} (421, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 465,\ (\ :1/2),\ 0.842 - 0.539i)\)

Particular Values

\(L(1)\) \(\approx\) \(2.00305 + 0.586222i\)
\(L(\frac12)\) \(\approx\) \(2.00305 + 0.586222i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.913 + 0.406i)T \)
5 \( 1 + (-0.5 - 0.866i)T \)
31 \( 1 + (1.18 - 5.43i)T \)
good2 \( 1 + (-0.671 + 0.488i)T + (0.618 - 1.90i)T^{2} \)
7 \( 1 + (-0.743 - 0.825i)T + (-0.731 + 6.96i)T^{2} \)
11 \( 1 + (2.72 - 0.579i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (0.521 - 4.95i)T + (-12.7 - 2.70i)T^{2} \)
17 \( 1 + (-7.11 - 1.51i)T + (15.5 + 6.91i)T^{2} \)
19 \( 1 + (0.483 + 4.59i)T + (-18.5 + 3.95i)T^{2} \)
23 \( 1 + (2.11 + 6.51i)T + (-18.6 + 13.5i)T^{2} \)
29 \( 1 + (-2.44 + 1.77i)T + (8.96 - 27.5i)T^{2} \)
37 \( 1 + (-3.90 + 6.77i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (-7.99 - 3.55i)T + (27.4 + 30.4i)T^{2} \)
43 \( 1 + (-0.758 - 7.22i)T + (-42.0 + 8.94i)T^{2} \)
47 \( 1 + (8.43 + 6.12i)T + (14.5 + 44.6i)T^{2} \)
53 \( 1 + (-7.32 + 8.13i)T + (-5.54 - 52.7i)T^{2} \)
59 \( 1 + (-7.59 + 3.38i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + 12.4T + 61T^{2} \)
67 \( 1 + (3.61 + 6.25i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + (-2.99 + 3.32i)T + (-7.42 - 70.6i)T^{2} \)
73 \( 1 + (12.0 - 2.56i)T + (66.6 - 29.6i)T^{2} \)
79 \( 1 + (1.05 + 0.223i)T + (72.1 + 32.1i)T^{2} \)
83 \( 1 + (-8.63 - 3.84i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (2.01 - 6.20i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-2.08 + 6.40i)T + (-78.4 - 57.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32067102718218967741541051718, −10.29036191188568781290503462017, −9.255019987292914620131325721465, −8.332658102005138014822416299465, −7.60993046654567240077412330402, −6.56408644042970513499567851342, −5.18068326512404423418144445175, −4.19694981899824416287562823629, −2.97014860698432635671316510291, −2.11554347829636289670567480774, 1.20097748596519823884571899957, 3.07046795277811831792300404508, 4.25312054746384389356406714912, 5.48812729708255828092943901368, 5.74911484790437261404860815929, 7.59610189594227342811891960398, 7.936003980089114889779130861331, 9.342573208669956886990304955401, 10.12193155263156964007796649004, 10.55756380789090064219813914207

Graph of the $Z$-function along the critical line